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ABSTRACT 
 
The article deals with the predictions of time and space evo-
lution of pollution dispersion during the early phase of a po-
tential radiation accident. The goal is to design a proper fast 
algorithm which could enable more precise online estima-
tion of radioactivity propagation on basis of recursive pro-
cedure of Bayesian filtering. Predicted trajectory of the 
plume of pollutants is refined online according to the values 
of observations incoming from terrain. The technique should 
be sufficiently robust to cope an expected lack of informa-
tion in the same beginning of the event. A certain modifica-
tion of the particle filter (PF) method is investigated here. Its 
robustness is illustrated on a real but atypical meteorological 
situation. Short time meteorological forecast entering the 
model is for this case in poor correspondence with the real 
time local meteorological measurements. Radiological meas-
urements are assumed to be coming periodically from the 
Czech Early Warning Network (EWN). The respective ra-
diological values in the real positions of EWN receptors are 
generated “artificially” drawing inspiration from the real lo-
cal meteorological measurements.  
 
INTRODUCTION 

Ongoing efforts on improvement of safety requirements 
cover both implementation of inherent safety features of the 
new constructed facilities and substantial improvement of 
emergency preparedness and response. Tracking and predic-
tions of hazardous material spreading through the living en-
vironment provide decision-makers fundamental informa-
tion for effective emergency management. Modelers should 
be capable to generate relevant information even in the lack 
of some basic input information. Correct chain of simulated 
consequences requires as realistic as possible description of 
the accident evolution from the same beginning of the harm-
ful substances release. Just at the moment the accident sce-
nario is not known completely and large uncertainties are 
involved. The evolution of emergency situation is usually so 
far varied and complicated that specific ad hoc solutions 
have to be introduced. 

In this paper we are studying an application of data assimila-
tion (DA) procedure insisting in optimum combination of 
prior knowledge with real observations incoming from ter-
rain. The observations bring simultaneously an indirect in-
formation related to the system state. Advanced statistical 

assimilation methods account for both model and meas-
urements error covariance structure. The problem of pol-
lution spreading in the atmosphere is described by non-
linear and generally non-Gaussian model. The attention is 
focused on Bayesian tracking of the toxic plume propaga-
tion over the terrain. It was shown (e.g. Ducet et al. 2001, 
Doucet 2008, Hoteit at al. 2008, Moradkhani 2008) that 
except simple problems the Bayesian inference in such 
complex systems is not analytically tractable. Conse-
quently, the technique implemented here tries to solve a 
certain particular task of recursive Bayesian filter by 
Monte Carlo simulations.  The objective of tracking is to 
refine recursively model predictions  on basis of incoming 
measurements. Tracking in Bayesian approach concerns 
of recursive evaluation of the state posterior probability 
density function (pdf) evolution based on all available in-
formation. The article addresses the Bayesian tracking 
procedure from the same beginning of the complicated 
toxic plume spreading under (possibly) incomplete sce-
nario description.    

 
PROBLEM FORMULATION 

We restrict our attention to the stochastic state-space 
models   
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in discrete time steps t=1,…,T. Here, xt is N-dimensional 
vector unobserved internal quantities describing state of 
the model at time t, and yt is M-dimensional vector of 
measurements obtained during the time step < t-1;t >. 
Nonlinear vector functions g() and h() describe evolution 
of the state in time, and mapping of the state to measure-
ments, respectively. Disturbance (noise) vectors wt and vt 
are considered to be independent realizations of random 
variables with zero mean and known variances, Qt and Rt, 
respectively. 

Formalization (1) is intuitively appealing for stationary 
additive disturbances (noises). However, it may be mis-
leading when e.g. variance of the disturbance is state-
dependent. Then, we consider a slightly more general ver-
sion of (1) 
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Where p(xt|xt-1) denotes probability density function (pdf) of 
random variable xt given realization of xt-1. Model (1) arises 
as a special case (2) for choice p(xt|xt-1)=N(g(xt-1),Qt) and 
p(yt|xt)=N(h(xt),Rt). The recursion starts at t=0 for x0~p(x0) 
which is known as prior pdf. 

Model (2) enforces too strong restrictions: (i) realization of 
state variable x at time t depends only on values of xt-1, and 
(ii) realization of the measurement yt depends only on cur-
rent realization of the state xt. These assumptions may seem 
very restrictive, however, wide range of different models 
can be converted into the form (2) under appropriate choice 
of state variable xt. For example, when initial conditions of 
the process or time-invariant parameters of the pdfs are not 
known, they are considered to be part of the state. In that 
case, xt is sometimes called the augmented state, however, 
we will not make such distinction. In this paper, xt denotes 
aggregation of all uncertainty in the model. Specific mean-
ing of different parts of the state will be discussed later. 

State-space formulation has been used in DA problem in the 
later stages of accident in post-emergency phases. Long term 
evolution of 137Cs deposited on terrain was predicted recur-
sively (Hofman et al. 2008a) using Kalman filter technique, 
which is an optimal estimator for linear functions g() and h() 
and Gaussian pdfs in (2). But such linear model is insuffi-
cient for formulation of more complicated problems arising 
in the early phase of accident (Rojas-Palma 2005) and more 
general nonlinear dynamic model (2) is required. Bayesian 
approach to estimation of unknown quantities xt is based on 
recursive evaluation of posterior density p(xt|y1:t) using the 
Bayes rule: 
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Here, y1:t = [y1,…,yt] and ∝  denotes equality up to multipli-
cative constant, see (Ducet et al. 2001) for details. Note that 
since xt aggregates all uncertainty is the model, posterior 
density p(xt|y1:t) potentially provides estimates of unknown 
parameters, unknown initial conditions,  or --- under appro-
priate parameterization --- even unknown variants of the 
model.  

 
PARTICLE FILTERING 

Principle 

Except for few special cases (such as the Kalman filter), in-
tegration (3) is intractable. Therefore, various approximation 
has been proposed. The particle filter (also known as se-
quential Monte Carlo) is based on approximation of the pos-
terior density by a weighted empirical approximation 
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where , i=1,…,n are samples of the random variable, 

i.e. the particles, and wi,t >0, 
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weights. Under this approximation, integration (3) is re-

duced to sampling from proposal densities (in our case 
p(xt|xt-1) ), and recursive evaluation of particle weights 
wi,t. 
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Key advantages of this approximation are easy evaluation 
of an arbitrary moment, m(xt),  
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ability to handle arbitrary non-linear functions, and guar-
anteed convergence to the true posterior with growing 
number of particles n. The main disadvantage of the ap-
proach is its excessive computational cost. 
 
Adaptation of particle filtering scheme to the early 
phase of the plume propagation 

Intuitively, the key state variable of the scenario is distri-
bution of the pollutant in the atmosphere on the terrain. 
We model this distribution via segmented Gaussian 
plume model (SGPM). This is a discrete model with one-
hour time step. Within each hour, given amount of a pol-
lutant is released and evolution of this quantity is simu-
lated taking into account all environmental effects (Pecha 
et al. 2007).  

Real release dynamics is partitioned into equivalent num-
ber of fictive one-hour segments of constant release 
source strength. Synchronization with hourly forecast of 
meteorological conditions is performed. Hourly segment 
of the release is spreading during the first hour as a 
“Gaussian droplet”. In the following hours of spreading 
according to available hourly meteorological forecast the 
droplet is treated as “prolonged puff” and its dispersion 
and depletion during the movement is simulated numeri-
cally by large number of elemental shifts. More detailed 
description of the procedure is described in (Pecha et al. 
2008, Hofman at al. 2008). Each hourly segment g is con-
secutively modelled in its all hourly meteorological 
phases f and output vector vTOTAL of values of interest are 
superposed as:  

( )
∑ ∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
=g

gF

f

fg
TOTAL

TOT

ss
)(

1

,                                           (7) 

Each plume segment is uniquely described by the vector 
variable s g, f . Evolution of each such plume over the ter-
rain is described by deterministic SGPM model men-
tioned above. Let rewrite symbolically sg,f to s(τ)t, where 
τ < t denotes time of the release of the plume. The SGPM 
model contains many input and model parameters (Pecha 
et al. 2005). Most of them are treated as single values that 
enter the model by their best estimate values. Important 
random parameters are selected on basis of sensitivity 
analysis of the SGPM model and constitute random vec-
tor Θ . Its dimension and meaning of the components se-
lected for our scenario demonstrates Table 1.  

Variable s(τ)t is now parameterized by vector of parame-
ters Θt. This vector contains both time invariant parame-
ters, such are dispersion and dry deposition characteris-
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tics, and time-variant parameters, such are wind direction 
and wind velocity at time t.  

Under probabilistic formalization (2), the original SGPM 
model is interpreted as conditional density 
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Parameters Θt were considered to be known in the original 
formulation. In this text, we consider them to be unknown, 
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Where distribution of vector parameter p(Θt) is composed of 
independent pdf of scalar parameters given in table 1. 
 
Table 1: Components of  random parameter vector Θ.  
 

random  
parameter 

unit implementa-
tion  inside 

code 

uncertainty 
bounds 

θ1: act. release 
f=1 

[Bq.h-1] Q =  c1⋅ Qb 
Qb in f=1 

LU; c1∈ 
<0.31;3.1> 

θ2 : horizont.     
dispersion 

[m] σy (x) = c2 * 
σy (x)b

 

Ntrunc ; c2∈ 
<0.89;1.12> 

θ3 : dry depo 
velocity 

[m.s-1] vg =c3 *vgb
 LU ; c3∈ 

<0.91;1.10> 
θ4 : Wind dir- 
ection f=1 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c3*2π/80 

U ; c4∈ 
<-12.0;+12> 

θ5 : Wind dir- 
ection f=2 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c3*2π/80 

U ; c5∈ 
<-12.0;+12> 

θ6 : Wind dir- 
ection f=3 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c3*2π/80 

U ; c6∈ 
<-12.0;+12> 

θ7 : Wind 
speed f=1 

[m.s-1] V10= c7 ×Vb
10   

Vb
10 in f=1 

U ; c7∈ 
<0.5;3.0> 

θ8 : Wind 
speed f=2 

[m.s-1] V10= c8 ×Vb
10  

Vb
10 in f=2  

U ; c8∈ 
<0.5;3.0> 

θ9 : Wind 
speed f=3 

[m.s-1] V10= c9 ×Vb
10   

Vb
10 in f=3 

U ; c9∈ 
<0.5;3.0> 

θ10: act. re-
lease f=2 

[Bq.h-1] Q =  c10⋅ Qb 
Qb in f=2 

LU ; c10∈ 
<0.31;3.1> 

Index b stands for “best estimate “ values;  
V10 – wind speed at 10 m height;  
f – phase (hour) after the release start;   
Type of distribution:  LU-loguniform; Ntr – Normal, truncated; 
                                  U – Uniform; 

The measurements are modelled to have Gaussian distribu-
tion: 
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With mean value given by the sum of outputs from each 
plume, computed using model SGPMdepo which is a bilinear 
approximation of the SGPM model at the points of meas-
urement. Covariance matrix Σt was chosen as 

)(diagpropmodel tMt yI σσ +=Σ                (11) 

with chosen constants σmodel and σprop. The first term models 
inaccuracies of the chosen Gaussian plume approximation, 

the second term models inaccuracies of the measuring de-
vices. This model is almost an arbitrary choice, that is 
used to show potential of the considered methodology. 
Model of observation for practical purpose should be de-
signed using exact characteristics of the application spe-
cific measurement devices.  
 
Implementation of PF algorithm 

The following steps represent computational flow of re-
cursive particle filtering applied here: 

1. Generate N realizations of parameter vector Θ0 
from densities listed in Table 1 and N correspond-
ing plumes (in the following text interpreted as 
“particle”), assign all weight wi,t=1/N. 

2. For each time t=1...T  
a. Generate new realizations of Θt  and for 

each plume compute one step prediction 
using the SGPM. Let us introduce term 
“particle prolongation”. 

b. If measurements are available, recom-
puted weights wi,t using (5). 

c. Compute posterior values of parameters 
of interest using (6) 

Parameter vector Θ is expressed in Equation (8) as Θt. It 
means that count) of the components treated as random 
within a certain time interval can vary, symbolically: 

Θt=1   ≈   θ1   θ2   θ3   θ4   θ5   θ6   θ7   θ8   θ9   θ10          
Θt=2   ≈   θ1   θ2   θ3   θ4   θ5   θ6   θ7   θ8   θ9   θ10     
Θt=3   ≈   θ1   θ2   θ3   θ4   θ5   θ6   θ7   θ8   θ9   θ10          
  ………………………………………………………………………….      

 Relevant components entering the sample procedure are 
written in bold. We can also imagine alternative e.g. lo-
cally dependant land use characteristics when correspond-
ing θ2 and θ3 could be assumed as relevant in all time 
steps.   
 
Experimental results 

The sampling scheme consists of generation of 5000 par-
ticles corresponding to 5000 realisations of random pa-
rameter vector Θ with 10 components θi (i=1,…,10) ac-
cording to uncertainty characteristics described in Table 
1. 

Evaluated values of the particle weights using σmodel  =  
100 and σprop  = cov × e6, with cov =1,…5 , are illustrated 
in Figure 1. The smallest values of variance (top) sharply 
selects only a few particles. With increasing variance, 
cov=2, …,5, uncertainty in the weight grows and more 
particles become non-negligible. 
Prior and posterior histograms of distributions of some 
parameters θ from Table 1 are compared in Figure 2. 
Note that the posterior is sharply peaked for the three 
leftmost parameters while it is still widespread for the re-
maining parameters. But we should distinguish between 
parameter estimation for the concrete analysed situation 
and common average conditions. It should not be con-
fused with parameter estimation which could give rec-
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ommendation on parameter values commonly valid “in av-
erage”.   

 

 
Figure 1: Posterior weights wt at  t = 2 for five choices cov.  
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Figure 2: Comparison of prior (top row) and posterior (bot-
tom row) histograms of distribution of selected parameters 
for cov=3.  
 

ILLUSTRATION OF PARTICLE FILTERING 
APPLIED IN THE EARLY STAGE OF A 
HYPOTHETICAL ACCIDENT  

The robustness of the PF method outlined above is illus-
trated for case of a certain circumstance when in the same 
beginning of an accident the decision maker is not provided 
by fully clear and unambiguous information. Experience 
from former radiation accidents pointed out the side effects 
leading to an information shocks with possible temporal pa-
ralysis of communication lines. In this sense we have ad-
justed a hypothetical accident scenario. Real meteorological 
situation from March 31, 2009 is taken into consideration 
and the moment of hypothetical accidental release is set to 
10.00 UTC. Available real meteorological observations 
measured at the point of nuclear power plant (NPP) and 
short term meteorological forecast are somewhat inconsis-
tent (see Table 2). Following ex post analysis can give a ret-

rospective view on the atypical actual situations ( their 
occurrence rate is surprisingly not negligible). Due to a 
possible information shock mentioned above we shall as-
sume conservatively a delay of two hours in recovery of 
radiation monitoring. Thus, the first measurements from 
terrain are coming just two hours after the release start.  A 
decision maker has a dilemma how to manage the predic-
tion of harmful substances in the early stage.     

Available meteorological data 

Let release of 131I radioactivity has started at 10.00 CET, 
March 31, 2009,  and lasted for 2 hours (see Table 2). At 
this moment three kinds of meteorological data were di-
rectly available: 

• Short term meteorological forecast generated 
twice a day (analysis time 00.00 and 12.00 
UTM, for each hour, sequences up to 48 hours): 

- Label METLOC: Simple local forecast for 
the point of NPP (hourly sequences of wind 
direction and speed, category of atmospheric 
stability according to Pasquill and precipita-
tion)  

- Label METGRID: extensive multilevel  3-D 
gridded meteorological forecast in HIRLAM 
format for vicinity 160 × 160 kilometers 
around NPP 

• Label METOBS: Observed values (real online 
meteorological measurements) incoming auto-
matically from the point of NPP  

All the data are provided by the Czech meteorological 
service and are available online through ORACLE DB 
server.  

   Table 2: Accidental release scenario of 131I , short-term 
meteorological forecast and real meteorological meas-
urements for “point” of NPP Temelin ( 49°10'48.53''N × 
14°22'30.93''E), time stamp 20090331-1000 CET. 

CET hour 10.00 11.00 12.00 13.00 
activity release 
of 131I  Bq/hour 

5.68 × 
e+14 

7.92 × 
e+14 

0 0 

wind direction1 
METLOC/ME
TOBS 

95.0 / 
54.0 

101.0 / 
69.0 

84.0 / 
65.0 

80.0 / 
80.0 

wind speed2 
METLOC/ME
TOBS 

2.0 / 
3.8 

2.1 / 
3.0 

1.9 / 
3.8 

2.2 / 
3.8 

Pasquill  atm. 
stabil.  
METLOC 

A A B B 

1) … at 10 m height, blowing “from” (degrees measured 
clockwise from North);    2) … at 10 m height  (m/s)  

Deterministic calculations according to SGPM model 
with METLOC meteorology for the first two hours of the 
release are illustrated in Figure 3. Superposition accord-
ing to (7) was used for quantity of 131I deposition on the 
ground (g=1, f=1 and 2;  g=2, f=2 ).   
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Figure 3: Release scenario with meteodata METLOC - 
model predictions for “best estimate” values of model pa-
rameters, just 2 hours after the release start. 
131I deposition ranges (Bq.m-2):  
 red: 5.00e+06 ÷ 1.31e+08 ;  blue: 1.00e+06 ÷ 5.00e+06 ; 
yellow: 1.00e+05 ÷ 1.00e+06 ; 

 
Arrangement of the real positions of monitoring sensors  

Early Warning Network (EWN) such a component of exist-
ing Radiation Monitoring Network (RMN) of the Czech Re-
public can be exploited for purposes of DA procedures. The 
main part of EWN is teledosimetric system (TDS) which for 
the NPP Temelin consists of two circles. The inner circle is 
positioned on the NPP-fence (see red circles in Figure 4 very 
close to NPP or in better discrimination in Figure 5) and con-
sists from 24 stations 2,5m above ground. The outer II. circle 
measurement positions are drown in Figure 4 by red squares. 
The dose-rate data are transferred each 4 minutes and stored 
to the ORACLE DB server for online access. We are assum-
ing all these receptors to be operable. An ability to measure 
selected magnitudes of deposition is a question of a future 
monitoring development. 

For DA purposes we have 79 sensors located in vicinity of 
the nuclear facility. In this number we have included 3 mo-
bile measurement stations located randomly in the middle 
distances. 

 

 
Figure 4: Release scenario with meteodata METOBS - 
model predictions for “best estimate” values of model pa-
rameters, just 2 hours after the release start.      
131I deposition ranges (Bq.m-2):  
 red: 5.00e+06 ÷ 1.31e+08 ;  blue: 1.00e+06 ÷ 5.00e+06 ; 
yellow: 1.00e+05 ÷ 1.00e+06 ; 
 

 
Figure 5:   TDS on fence of NPP Temelin – 24 detectors 
 
Artificial simulation of the missing real accidental ra-
diological data 
We hope that all considerations remain only in hypotheti-
cal level and the testing accidental radiological data will 
be always generated artificially. The technique is some-
times known as “twin experiment”.  
 A degree of belief to the initial near-range estimation us-
ing the SGPM model predictions with METLOC mete-
orological forecast (see Figure 3) will be low if we take 
into considerations the similar calculations with 
METOBS real meteorological measurement (see Figure 
4). We should respect the fact that if something happens, 
the shape of the corresponding accidental trajectory close 
to the source will correspond more likely with the Figure 
4. Without more discussion, we use this subjective as-
sumption and generate the “artificial measurements” on 
basis of Figure 4. 
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THE RESULTS ACHIEVED FOR SEVERAL FIRST 
TIME STEPS  
 
Finally, the hypothetical DA scenario defined for the early 
phase includes:  

1. Predictions of particles (trajectories) according to the 
SGPM model by given realisations of the parameter 
vector Θ, always using gridded meteorological fore-
cast METGRID. 

2. The first set of “artificial measurements” (being in a 
certain discrepancy with model predictions) is incom-
ing just two hours after the release start. 

3. Update the posterior density according to measure-
ments and evaluation of its selected moments. 

4. Continuation of the recursive PF procedure in the 
next time intervals.  

Generation of posterior density is performed for 5 choices of 
covariances cov=1,….,5 according to Equation (11) and 
numerical values from Figure 4. Expected mean values are 
calculated using common expression according to  Equation 
(6), specifically in the form: 
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An estimation of the expectations on basis of N generated  
particles xt

(i) , i=1:N  from posterior distribution is given by: 
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For N→∞  is achieved almost sure convergence of IN(f) to 
I(f). 

 
Figure 6: Expectations of the activity deposition in depend-
ency on covariance matrix (acc. Equation (11). A,B,C,D 
stand for cov=1,2,4,5. 

 

 
Figure 7: Prediction of expectations of the activity depo-
sition quantity from 2. to 3. hour (case A → B for cov=1;  
case C → D for cov=5). 

The expectations of the quantity of activity deposition are 
given in Figure 6 for cases of cov=1,2,4,5. The outer con-
tour corresponds to the level of 1.00 E+03 Bq.m-2. The 
results show tendency of the updated model to approach 
the measurements with low noises. The values are slightly 
spreading when inaccuracies of measurements grows 
(higher cov ). Covariances of the measurement errors 
were selected rather low. At present new tests with in-
creased covariance are running and tendency to lean to 
either model predictions or measurements are mapping.  

Figure 7 demonstrates prolongation one time step for-
ward. Case A concerns cov=1 (also in Figure 6 A) expec-
tation from the posterior density just after 2 hours after 
the release start. Using numerical approximation of the 
second part of Equation (3) which stands for transition 
equation and proposal pdf in specific formulation p(xf=2 | 
xf=3) , the prediction from the second hour (upper left A) 
to the third hour (upper right B) is done (prediction step). 
SGPM model prolongs the weighted particles within the 
step 2 → 3. The similar shift for cov=5 stands for cases C 
→ D. 
 
CONCLUSION  
The article extends former investigations in DA method-
ology (Hofman 2007) where analysis of the input model 
parameters uncertainty and both model error and observa-
tion error covariance structure were examined. DA in 
early stage of accident requires much more sophisticated 
access. From all possible techniques is adopted particle 
filter, which has one significant attribute. In PF the state 
ensemble trajectories are kept unchanged during the up-
date step as for the forecast step and only their weights 
are updated. The particles remain unchanged after the 
correction (update) step and only receive the new weight ( 
according to Equation (5) ) reflecting closeness of the 
particle with respect the new observations.  
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This evident PF feature has favourable impact on exploita-
tion of nonlinear prediction model SGPM in DA process in 
the early stage. SGPM model is in principle a trajectory 
model. The PF does not disrupt the trajectory information 
and it can be easily recursively forwarded.  
The presented approach brings advantage of fast computa-
tion even for large number of realisations. One PF step of 
update and predictions with 5000 realisations is accom-
plished during 15 minutes and promises to support the deci-
sion making process in real time.  
The adopted procedure seems to be robust and suitable to 
manage a certain discrepancies and scenario incompletness 
occurring from the same beginning of accident. The authors 
narrow down anxiously the range of some uncertainties. For 
example the range of horizontal dispersion uncertainty c2 
and dry deposition c3 should be much higher (in correspon-
dence with expert judgments). Afterwards, the traces (e.g. in 
Figure 6) would be more dispersed in horizontal and longi-
tudinal directions. Even the calculations have covered only 
the first time step and demonstrated code ability to predict in 
the second step, the full recursive PF application is easily 
feasible. 
Still open remains a question of availability of measure-
ments, capability to provide specific quantities and configu-
ration and density of monitoring stations. The first negotia-
tion between modellers and specialists responsible for moni-
toring was launched (Kuca 2008). The poor information can 
result from rare measurements. On the other hand, require-
ments issued from DA experience should be reflected in the 
future development of radiation monitoring networks.    
DA plays substantial role in realistic prediction of evolution 
of radiation situation during nuclear emergency. Reliable 
information arriving on time provides decision makers with 
necessary time on judgement and introduction of efficient 
urgent countermeasures on population protection.  
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