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1 Introduction

Release of radioactive material into the atmosphere is the last possible resort
of any accident in a nuclear power plant. It is an extremely rare event, how-
ever with severe consequences for potentially many people living in proximity
of the power plant. Awareness of radiation security has been increased after the
Chernobyl accident, and almost every country is now equipped with monitoring
network of on-line connected receptors continually measuring radiation levels.
Initial configurations of the network were designed by experts using their expe-
rience. With increasing pressure on improvement on the network reliability and
overall safety, many countries are considering expansion of the measurement
network or it reconfiguration.

Hence, formal methodologies how to optimize the monitoring network (and
mobile extensions) received recently significant attention in the literature, see
e.g. [Baume et al., 2011, Abida et al., 2008, Melles et al., 2011] for the latest
development.

In general, there are many aspects to consider when designing monitoring
network. Some issues are now summarized:

Scale: large scale networks needs to be considered for severe accidents [Abida
et al., 2008], while less severe accidents a�ect only direct neighbourhood
of the power plant.

Network Type: di�erent approaches has to be taken for optimization of station-
ary network which needs to consider long term statistics [Abida et al.,
2008, Melles et al., 2011], and specific short-term scenario and mobile
groups [Heuvelink et al., 2010, Abida and Bocquet, 2009]. The latter ap-
proach is to be applied when the radiation plume is already in the air and
the task is to improve its monitoring as fast as possible.

Uncertainty model: Common tool for modeling spatial filed an it uncertainty is
krieging, or regression krieging which is commonly used in optimization
[Melles et al., 2011]. Another possibility is to represent the posterior by
Gaussian density [Zidek et al., 2000]. An alternative model of uncertainty
is Monte Carlo samples [??] which has not been used in any optimization
approach yet.

Loss function: defines criteria of optimization. One of the early criteria was in-
formation entropy [?]. It has been extended to reflect cost of measurement
installation in [Zidek et al., 2000]. However, its results are very sensitive
to the introduced cost of the entropy which may be hard to quantify.
More intuitive option is to count success or failure of an assimilation pro-
cedure to correctly classify the a�ected area into the classes of radiation
protection countermeasures, [Heuvelink et al., 2010].

Optimization form: full free form optimization via. simulated annealing were
employed on the large scale, where accuracy of location is low hence there
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is still enough freedom to locate the station with respect to local condi-
tions. Application of this approach to short term optimization, e.g. of
mobile groups [Abida and Bocquet, 2009, Heuvelink et al., 2010], is less
attractive since the freedom to choose location is limited.

In this paper, we are concerned with local scale modeling of less severe acci-
dent in the range of tens of kilometers from the nuclear power plant. Both the
stationary and mobile groups will be discussed. The preferred model of un-
certainty is the empirical density which will be assimilated with measurements
using the sequential Monte Carlo methodology. We will discuss influence of
various loss functions. In general, we will not consider free form optimization
but only comparison of preselected set of network configurations. The main
reason for this are practical issues that needs to be taken into account such as:
availability of power supply, maintenance, permission from owner of the land,
etc. These concerns are too complex to optimize automatically. Therefore, these
will be assessed by experts and the task is only to evaluate suitability of certain
configuration over its competitors.

2 Methods

2.1 Decision Theory Framework
The key result of decision theory under uncertainty is formally simple [?]. If we
are to choose which action, aú, from a set A = {a1, . . . , a3} is best, we are to
choose such action that minimizes the expected value of the loss function

aú = arg min
aœA

E
p(x|d)(L(a, X)|D), (1)

where
X is the potential outcome of the action,
L(a, X) is a function mapping the space of all actions and outcomes to the

real axis,
D are the measured data,
E

p(X|D,a)() is the operator of expected value E
p(X|D)(L(a, X)) =

´
p(X|D, a)L(a, X) dX,

and
p(X|D) is the probability of realization of a specific value of X given real-

ization of data D and action a.
This formalizm is rather general and its results will di�er with di�erent

choices of the loss function L and/or di�erent reprezentations of uncertainty.
Indeed, many existing solutions may be interpreted as various choices of these
two factors. For example, entropy minimization techniques choose logarithm
of the probability density function to be their loss function. In particular,
Zidek et al. [2000] considered X to be spatial distribution of the pollutant with
Gaussian distributed density. Di�erent scenarios of optimization are defined by
their parameterizations.
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Stationary network the set of actions A contains all possible configurations of
the measuring sites described by their spatial coordinates. The space
may contain networks of various sizes. The uncertainty space X contains
all possible realizations of weather conditions and release scenarios. The
available data, D, are weather measurements recorded over a period of
time. An example of such optimization is described in [Abida et al., 2008].

Mobile sensors the set of sensors is usually fixed and the action space A contains
possible trajectories of the mobile sensors. The uncertainty space, X,
contains parameters of the release and weather conditions. The measured
data D contains measurements of the actual weather and readings from
the stationary monitoring network.

In this paper, we will focus on the mobile sensor scenario, however, the method-
ology can be easily applied to optimization of the stationary network.

2.2 Loss function
We will test various loss functions proposed in the literature: (i) entropy, (ii)
misclassification of decisions.

2.2.1 Entropy optimization

The purpose of the locating new mobile measuring station is to reduce uncer-
tainty in the estimated parameters. This vague idea can be formalized using the
entropy principle [?Zidek et al., 2000]. The main idea follows from the following
equality

H(X, Z|D, ⁄) = H(X|Z, ⁄, D) + H(Z|D, ⁄), (2)

which is a well known identity on from entropy. A common assumption made
e.g. in [Zidek et al., 2000] is that the total entropy H(X, Z(⁄)|D) is constant
for all locations ⁄ since we are not adding any new information. This is true
only under assumption that the entropy of measurements is independent of its
location ⁄ and X. Rewriting (2) as

H(X, Z|D, ⁄) = H(Z|X, ⁄, D) + H(X|D, ⁄), (3)
= H(Z|X, ⁄, D) + H(X|D), (4)

we note that the entropy in X can not be changed by ⁄. However, the conditional
entropy H(Z|X, ⁄, D) can.

Consider complete knowledge of the state variable p(X) = ”(X ≠ X), and
normal distributed measurement error with variance ‡(X, ⁄, D). Then the joint
entropy is

H(X, Z|D, ⁄) =
ˆ

p(Z|X, ⁄, D) log p(Z|X, ⁄, D)dZ

= 1
2 log(2fi|‡(X, ⁄, D)|).



2 Methods 4

which is constant only for constant variance of observations ‡.
In this work, we are concerned primarily with observations that have ab-

solute value of their error relative to the observed value. Hence, we should
not rely on this assumption and perform full optimization of H(X|Z, ⁄, D) =
H(X, Z|D, ⁄) ≠ H(Z|D, ⁄).

2.2.2 Mutual information

In Ho�mann and Tomlin [2010], it is argued that optimal loss is the mutual
information

I(Z; X) = H(Z) + H(X) ≠ H(X, Z). (5)
Since H(X) is constant, (5) and (3) are equivalent.

2.2.3 Misclassification of decision

While various loss functions has been proposed in the literature, we follow
[Heuvelink et al., 2010] and define loss function to be proportional to the number
of incorrectly classified people in evacuation zones

L(⁄, X) = –I
false_positive

+ —I
false_negative

, (6)
where I

false_positive

is the number of people incorrectly classified for evacuation,
and I

false_negative

is the number of people that are incorrectly classified to stay
in the polluted area. It is computed as a sum over all inhabited places indexed
by j:

I
false_positive

=
ÿ

j

population
j

◊ (Ĉ
j

> C & C
j

< C),

I
false_negative

=
ÿ

j

population
j

◊ (Ĉ
j

< C & C
j

> C).

Here, D denotes a threshold for the total accumulated dose of the pollutant.
For simplicity, we may assume to split the area around the power plant into

J districts, each representing a constant number of inhabitants, e.g. 1000, which
live approximately at given location, i

j

, j = 1 . . . J , which denote the points of
interest. The total absorbed dose in these localities will be represented by a
vector c = [C(i1), C(i2), . . . C(i

J

)].

I
false_positive

=
Jÿ

j=1
(ĉ

j

> C & ĉ

j

< C). (7)

I
false_negative

=
Jÿ

j=1
(ĉ

j

< C & ĉ

j

> C). (8)

and the loss function can be expressed in terms of expected value

L(a, X) = L(Ĉ(⁄), )
ĉ(⁄) = E(c(X, Z)|⁄). (9)
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2.3 Atmospheric dispersion model
When the pollutant is released into the atmosphere, it forms a plume the shape
of which is subject to wind and dispersion. For a perfectly known parameters
of the release ◊ and a perfectly known weather conditions w (containing wind
speed and direction, Pasquill’s stability category, etc.), the shape of the plume
can be very well approximated by the Gaussian plume model of a sequence of
pu� models (). The proposed methodology will work with any type of dispersion
model, however, we choose the classical pu� model to perform our experiments.
Specifically, the release is modeled by a sequence of pu�s labeled i = 1, . . . , I
where concentration of the pollutant in one pu� at time · is given by:

C
i

(s, ·) = Q
iÔ

2fi3/2‡1‡2‡3
exp

C
≠ (s1 ≠ l1,i,·

)
2‡2

1

2
≠ (s2 ≠ l2,i,·

)2

2‡2
2

≠ (s3 ≠ l3,i,·

)2

2‡2
3

D
,

(10)
where s vector of spatial coe�cients, l

i

= [l1,i,·

, l2,i,·

, l3,i,·

] is vector of location
of the pu� center, ‡1, ‡2, ‡3 are dispersion coe�cients, and Q

i

is the released
quantity in the ith pu�.

2.4 State space model
The key uncertainty is with the released dose Q

i

, i = 1, . . . , I and the weather
conditions „ and v. We have chosen to model the uncertainty in the wind field
as corrections of the numerical weather prediction:

v
t

(s) = ṽ
t

(s)a
t

, (11)
„

t

(s) = „̃
t

(s) + b
t

, (12)

where ṽ
t

(s), „̃
t

(s) are the wind speed and wind direction predicted by the nu-
merical model at location s, respectively. Constants a

t

and b
t

are unknown
biases of the prediction model at time t. Correction of the wind field forecast
is then achieved by estimation of a

t

and b
t

using random walk model on their
time evolution.

We assume that we measure the radiation dose, wind speed and wind direc-
tion at meteostation near the power plant.

The full state of the system then

x

t

= [a
t

, b
t

, Q1, . . . Q
t

, l1, l2 . . . , l

t

],

and observation vector at time t is

y

t

= [v
t

, „
t

, y1,t

, y2,t

, . . . y
m,t

].

2.5 Data Assimilation via Sequential Monte Carlo
We assume that all uncertainty is modeled by empirical probability density
function

p(X
t

|D
t

) ¥
nÿ

i=1
w

(i)
t

”(X
t

≠ X
(i)
t

), (13)
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where X
(i)
t

is a sample of the state space trajectory X
t

= [x1,

x2, . . . , x

t

].
Assimilation of the measured data is then achieved via sampling-importance-
resampling procedure, where the weights can be computed recursively,

w
(i)
t

Ã w
(i)
t≠1

p(y
t

|x
t

)p(x
t

|x
t≠1)

q(x
t

) .

3 Navigation of mobile sensors

3.1 Entropy loss
For the entropy loss function, we are to evaluate relation (3), where

H(X, Z|D, ⁄) =
ˆ

p(X, Z) log p(X, Z) dX dZ, (14)

H(Z|D, ⁄) =
ˆ

p(Z) log p(Z) dZ, (15)

Under the chosen approximation (13), the joint and the marginal densities are

p(X, Z|D, ⁄) =
ÿ

i

w(i)p(Z|X, ⁄)”(X ≠ X(i)). (16)

p(Z|D, ⁄) =
ÿ

i

w(i)p(Z|X(i), ⁄). (17)

Substituting (16) into (14)–(15) we obtain:

H(X, Z|D, ⁄) =
ˆ ÿ

i

w(i)p(Z|X(i), ⁄)”(X ≠ X(i)) log
C

ÿ

i

w(i)p(Z|X(i), ⁄)”(X ≠ X(i))
D

dZ dX.

=
ˆ ÿ

i

w(i)p(Z|X(i), ⁄) log
Ë
p(Z|X(i), ⁄)

È
dZ

=
ÿ

i

w(i)H(Z|X(i)) (18)

H(Z|D, ⁄) =
ˆ ÿ

i

w(i)p(Z|X(i), ⁄) log
C

ÿ

i

w(i)p(Z|X(i), ⁄)
D

dZ. (19)

=
ÿ

i

w(i)
ˆ

p(Z|X(i), ⁄) log
C

ÿ

i

w(i)p(Z|X(i), ⁄)
D

dZ. (20)

The measurements z
j

are assumed to have normal distribution around value
µ

(i)
j

predicted by the ith dispersion model µ
(i)
j

= dispersion_model(X(i), ⁄
j

).
Standard deviation of the measurements is proportional to the mean

p(Z|X(i), ⁄) = N (µ(i)
j

, (“µ
(i)
j

)2), (21)
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while the measurements are assumed to be uncorrelated. I.e. vector of mea-
surements

p(z|X(i), ⁄) = N (µ(i), �(i)),
µ(i) = [µ(i)

1 ...]
�(i) = diag(“µ(i))2

Note that evaluation of (18) for (21) is relatively simple, since

H(z|X(i), ⁄) = 1
2 log(2fi) + log(“

Ÿ

k

µ
(i)
j,k

)

H(X, Z|D, ⁄) = 1
2k log(2fie) + k log “ +

ÿ

i

w(i)
ÿ

k

log(µ(i)
j,k

).

However, evaluation of (19) is a complex integral which is hard to evaluate.
Therefore, we propose the following simplifications

Gaussian approximation of the mixture (16) obtained by moment matching:

p(Z|D, ⁄) = N (µ
z

, �
z

), (22)
µ

z

=
ÿ

i

w(i)µ(i),

�
z

=
Ëÿ

w(i)µ(i)(µ(i))Õ
È

≠ µ
z

µÕ
z

.

Then, the entropy (19) is approximated by the entropy of the Gaussian
distribution

H(Z|D, ⁄) ¥ H̃(Z|D, ⁄) = 1
2 log

#
(2fie)k |�

z

|
$

, (23)

where k is dimensionality of the covariance �
z

.
The final entropy is then

H(X|Z) ¥ 1
2k log(2fie) + k log(“) +

ÿ

i

w(i)
ÿ

k

log(µ(i)
j,k

) ≠ H̃(Z|D, ⁄),

= k log(“) +
ÿ

w(i)
ÿ

k

log(µ(i)
j

) ≠ 1
2 log |�

z

| , (24)

= k log “ +
ÿ

i

w(i)
ÿ

k

log(µ(i)
j,k

) ≠ 1
2 log |�

z

| , (25)

Semi-Gaussian uses the approximation by the Gaussian approximation only in-
side the log function in (19)

H(Z|D, ⁄) ¥ ≠
ˆ ÿ

i

w(i)p(Z|X(i), ⁄) log [N (µ
z

, �
z

)] dz.
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= ≠
ÿ

i

w(i)
ˆ

p(Z|X(i), ⁄)
5
≠1

2 log |�
z

| ≠ 1
2(z ≠ µ

z

)�≠1
z

(z ≠ µ
z

)
6

dz.

= 1
2 log |�

z

| + 1
2

ÿ

i

w(i)
5ˆ

p(Z|X(i), ⁄)(z ≠ µ
z

)�≠1
z

(z ≠ µ
z

)dz.

6
,

= 1
2 log |�

z

| + 1
2

ÿ

i

w(i)
ˆ

p(Z|X(i), ⁄)(zÕ�≠1
z

z ≠ µ
z

�≠1
z

z ≠ zÕ�≠1
z

µ
z

+ µÕ
z

�≠1
z

µ
z

)dz.

= 1
2 log |�

z

| + 1
2

ÿ

i

w(i)
Ë
(µ(i))Õ�≠1

z

µ(i) + tr(�(i)�≠1
z

) ≠ µ
z

�≠1
z

µ(i) ≠ (µ(i))Õ�≠1
z

µ
z

+ µÕ
z

�≠1
z

µ
z

È
,

= 1
2 log |�

z

| + 1
2

C
ÿ

i

w(i)
1

(µ(i))Õ�≠1
z

µ(i) + tr(�(i)�≠1
z

)
2

+ �
z

≠ µ
z

�≠1
z

µ
z

D
,

where the first term is equal to (23) and the second term is its correction.

Numeric integration: where we first establish support of the integral using ap-
proximation (22) to be

z œ< µ
z

≠ 3


�
z

, µ
z

+ 3


�
z

> . (26)

This support is discretized into M bins and integral (19) is approximated
by

H̃(Z|D) =
z

maxÿ

z

m

=z

min

(z
m+1≠z

m

)
A

ÿ

i

w(i)p(z
m

|X(i), ⁄) log
C

ÿ

i

w(i)p(z
m

|X(i), ⁄)
DB

.

(27)
This technique does not scale well with increasing dimensionality of the
measurements.

Also, techniques like importance sampling and Gauss Hermite quadrature can
be used.

3.2 Misclassification loss
Expected value of the misclassification loss (6) may be computed as

E(L(X, Z, ⁄)|⁄) =
ˆ

p(X, Z|⁄)L(Ĉ(⁄), X)dXdZ,

=
ˆ

p(Z|X, ⁄)p(X|⁄)L(Ĉ(⁄), X)dXdZ,

=
ˆ

p(Z|X, ⁄)p(X|⁄)L(Ĉ(⁄), X)dXdZ,

=
ÿ

w(i)
ˆ

p(Z|X(i), ⁄)L(Ĉ(⁄), X(i))dZ,

=
ÿ

w(i)L(i)(⁄), (28)

L(i)(⁄) = E(L(Ĉ(⁄), X(i))) (29)
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Algorithm 1 Evaluation of misclassification loss
• For each particle i do

1. generate K samples of fictitious measurements Z(k),

2. Compute weights (33), expected value ĉ, and L(Ĉ(Z(k)), X(i)),
3. Sum all loss functions to obtain (30).

• Compute the loss function via (28).

Note that (28) is a sum of contributions from each particle (29), where each
contribution is an integral over Z.

3.2.1 Importance sampling

Since (29) is an expected value, we may use the importance sampling proce-
dure with p(Z|X(i), ⁄) as its importance function and drawing K random trials
Z(k), k = 1 . . . K. The final approximation of (29) is then:

E(L(Ĉ(⁄), X(i))) ¥
ÿ p(Z|X(i), ⁄)

p(Z|X(i), ⁄)L(Ĉ(Z(k)), X(i)) =
Kÿ

k=1
L(Ĉ(Z(k)), X(i)),(30)

L(Ĉ(Z(k)), X(i)) = –

Jÿ

j=1
(ĉ

j

> C & ĉ

j

< C) + —

Jÿ

j=1
(ĉ

j

< C & ĉ

j

> C) (31)

ĉ =
ÿ

l

C(X(l))w̃(l), (32)

w̃(l) = w(k) p(Z(k)|X(l)⁄)q
m

w(m)p(Z(k)|X(m), ⁄) . (33)

Note that (33) is the same formula as in the update of the particle filter (). In
this case however, the measurement Z(k) is fictitious.

3.2.2 Fast importance sampling

While evaluation of loss functions for each particle may be most accurate, it is
also computationally demanding. An alternative is to use

E(L(X, Z, ⁄)|⁄) =
ˆ ÿ

w(i)p(Z|X(i), ⁄)L(Ĉ(⁄), X(i))dZ,

q(Z, i) =
ÿ

w(i)p(Z|X(i), ⁄). (34)

By drawing K random couples {i(k), Z(k)} we may approximate the whole loss
function by the same functions as in (30)–(33), with i replaced by i(k). �
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3.2.3 Gauss Hermite quadrature

Integration of expected value of a Gaussian distribution can be easily converted
into the conditions of Gauss Hermite quadrature [AbramSteg].
ˆ 1

‡
Ô

2fi
exp(≠1

2

3
z ≠ µ

z

‡

42
)L(z)dz =

----x = z ≠ µÔ
2‡

, dz = 2‡

----

=
Ô

2‡

ˆ 1
‡

Ô
2fi

exp(≠x2)L(
Ô

2‡x + µ)

= fi≠ 1
2

ˆ
exp(≠x2)L(

Ô
2‡x + µ)

¥ fi≠ 1
2

Kÿ

k=1
w

k

L(
Ô

2‡x
k

+ µ),

where w
k

and x
k

are Gauss Hermite coe�cients. For example for K = 6, the
values were obtained using http://www.efunda.com/math/num_integration/

findgausshermite.cfm:
k = 1 k = 6

x
k

-2.350604973 -1.335849074 -0.4360774119 0.4360774119 1.335849074 2.350604973
w

k

0.0045300099 0.1570673203 0.7246295952 0.7246295952 0.1570673203 0.0045300099
Multivariate integration with respect to z1 and z2 can be achieved by trans-

formation of the coordinates to independent variables and application of the
quadrature rules for each axis. However, the computation cost grows exponen-
tially with each dimension. Therefore, this approach is unsuitable for higher
dimensions.

3.3 Evaluation of the loss on horizon
In scenario with constricted trajectories of the mobile measurements—such as
mobile cars on a route—we may need to examine loss function on a horizon of
multiple time step ahead. Formally, we still seek optimization of (1), however
with notable extensions:

1. Then, the future measurements of the stationary network are also un-
known and the stationary network sites become part of the Z vector.
This considerably increases its dimension, and complicates evaluation of
the integrals.

2. The state X now contains also future values of the particles. This can
be easily evaluated and does not substantially increase the computational
complexity. However, the accuracy of the prediction is limited.

4 Results

A hypothetical 1 hour long release of radionuclide 41Ar with half-life of decay
109.34 minutes was simulated. Bayesian filtering is performed in time steps
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Fig. 1: Contour plot of estimated conditional entropy on the grid of ⁄ for three
approximations: Gaussian, semi-Gaussian and numeric, repectively.

t = 1, . . . , 18, with sampling period of 10 minutes. This sampling period was
chosen to match the sampling period of the radiation monitoring network which
provides measurements of time integrated dose rate in 10-minute intervals. The
same period was assumed for the anemometer. The simulated release started
at time t = 1 with release activity Q1:6 = [1, 5, 4, 3, 2, 1] ◊ 1e16 Bq.

Values of the measurements were simulated as random draws from measure-
ment model () with parameters given by the dispersion model with the “true”
parameters.

4.1 Assimilation method
Particle filter with N = 100 was used to obtain estimates of the posterior.
Estimates of the dose at time t = 12 given observations up to time t = 12 are
displayed in figure x, via their mean value.

4.2 Entropy
Evaluation of conditional entropy was performed on a rectangular grid of ⁄ =
[⁄1, ⁄2], ⁄1 =< 0, 10 >km, ⁄2 =< 0, 10 >km.

The value of conditional entropy for each location of ⁄ is displayed in Fig. 1.
Note that their di�erences are negligible. However, computational requirements
of their evaluation di�er significantly. The Gaussian approximation is the easiest
to compute, hence it will be used in further experiments.

An extension of the experiment was to consider a fixed position of one mobile
sensor at location ⁄

fix

and optimize position the second one. The results are in
figure 2.

4.3 Misclassification loss
Evaluation of the misclassification loss was performed on the same grid of ⁄ as
for the entropy.

The values of the misclassification loss obtained by the Gauss-Hermite quadra-
ture rule are displayed in figure 3. The points of interests i

j

are all points on
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Fig. 2: Entropy of the second measurement location for three selected locations
of the first measurement (denoted by red dot)..

Fig. 3: Evaluation of the misclassification loss function for various locations ⁄.

the ⁄ grid. To study sensitivity of the result to the chosen threshold, we set

C = k
c

ÿ

j

ĉ(i
j

)

for various choices of k
c

= {20, 1, 1/100}. Note that di�erence between these
values is in the scale, however, the shape of the loss is extremely similar.

Sensitivity with respect to the selected point of interest was tested by se-
lecting only one point in i1. Results computed by the Gauss Hermite method
are displayed in Figure 4. Even for a single point of interest the loss function
exhibits symmetry around the center axis of pollution spreading. The results
are very similar to those obtained for the entropy loss. However, evaluation of
the misclassification loss is much more computationally demanding. Therefore,
in the simple case presented here, optimization of the entropy loss would yield
the expected results for the least computational e�ort.

The main disadvantage of the Monte Carlo method is its sensitivity to the
realization of the random integration points. However, results obtained by the
Monte Carlo simulation are rather robust to the realization, see Fig 5. Moreover,
they are meaningful even for a single realization K = 1. This is caused by the
fact that the particles are resampled, i.e. there are copies of the same particle
in the ensemble. Hence, di�erent realizations of one point for p copies of the
same particle has the same e�ect as p realizations for the single copied particle.
This may be very advantageous property for multivariate integrations.

Advantages of the misclassification loss may become apparent on more de-
manding assimilation scenarios. Insensitivity of misclassification loss to its pa-
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Fig. 4: Comparison of contour plot of the misclassification loss (Guss Hermite
method) for di�erent points of interest. Point of interest i1 is denoted
by red dot.

K = 1 K = 6

K = 30 K = 100

Fig. 5: Repetition of the first experiment in Fig. 4 using the Monte Carlo
method for di�erent number of Monte Carlo trials.
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rameters (the selected threshold and points of interest) can be explained by small
variability of the particle population such that suppression of some weights leads
to selection of a very small number of them. Further experiments are necessary
to confirm this hypotheses.

5 Scenarios of application

The presented methods for evaluation of expected loss function can be applied
in various scenarios of radiation protection. In the early phase, they can be used
to navigate unmanned aerial vehicle (UAV) to track the radioactive plume. In
the late phase, they can be used to evaluate suitability of pre-selected routes for
monitoring cars.

5.1 UAVs
In the presence of UAVs, we may expect that they are capable of flying already
in the early phase, when the cloud is still over the terrain. We assume that the
UAVs are already in the air, and their measurements were used to assimilate
the results using the particle filter (13). The task is to select a new direction
where the UAV should fly.

• The space of actions A is then a set of angles < 0¶, 360¶ > and velocities
Èv

min

, v
max

Í for each UAV.

• In this context, we do not consider planning on long horizon. Only imme-
diate actions are considered.

• The UAVs are not autonomous and are supposed to communicate with the
coordination center. Hence, the center solves the optimization problem for
them.

• We suppose that the speed of the UAV is small compared to the sampling
period. Hence, we may neglect the consequences of the action of the neig-
bouring UAV. The action space is then naturally decoupled and each UAV
is optimized independently. Note however, that since each UAV commu-
nicate with the center, actions of all UAV will shape the loss function to
optimize.

• The advantage of UAV is that it is well capable of flying even close to the
radiation cloud. Hence, we will use the parameter evolution model in this
case.

5.2 Mobile groups
The current state-of-the art technology for mobile measurement is the mobile car
units. These units are supposed to follow a one of the pre-selected routes that
is given by the current emergency regulations. While the number of available
units is limited, the task is to select which car takes what route.
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• The space of actions A is then a Cartesian product of set of routes RV ,R œ
{r1, r2, . . . r

R

} and V is the number of available mobile units.

• The planing horizon is rather long, since we must consider the whole length
of the route which takes approximately hours.

• The units also communicate with the center, however, we do not assume
frequent re-routing of the mobile groups.

• Since the mobile groups are human operated, the risk of irradiation must
be considered as a part of the loss function.

6 Discussion and Conclusion

The task of best acquisition of informative data is addressed. It has been formu-
lated as a problem of decision making under uncertainty. The key factor in this
task is the chosen loss function. We have tested two principal loss functions:
entropy and misclassification loss. These were computed for the chosen ap-
proximation by the empirical distribution. Exact evaluation of these functions
is computationally expensive, therefore, we have tested various computational
simplifications. W have found that both loss functions and their approximations
yield comparable results. Therefore, the follow-up research of their application
to navigation of UAVs and mobile car units will be based on the most simple
methods, such as the Gaussian approximation of the entropy loss function.
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