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Abstract

The task of the decision support in the case of a radiation accident is to provide up-
to-date information on the radiation situation, prognosis of its future evolution and
possible consequences. The reliability of predictions can be significantly improved us-
ing data assimilation, which refers to a group of mathematical methods allowing an
efficient combination of observed data with a numerical model. The dissertation con-
cerns application of the advanced data assimilation methods in the field of radiation
protection. We focus on assessment of off-site consequences in the case of a radiation
accident when radionuclides are released into the environment.

The main contribution of this thesis is the development of sequential data assimila-
tion methods for the early and the late phase of a radiation accident. Data assimilation
is understood here as a particular case of recursive Bayesian estimation. Instead of
using traditional estimation methods for state-space models based on Kalman filter-
ing, we focused on sequential Monte Carlo methods, specifically particle filtering and
marginalized particle filtering.

Firstly, data assimilation methodology for the early phase of an accident was de-
veloped. It employs particle filtering with adaptive selection of proposal density for
estimation of the most important variables describing the aerial propagation of ra-
dionuclides. The general methodology is applicable to all parametrized atmospheric
dispersion models. It is demonstrated on a simulated release, where a bias of the basic
meteorological inputs and the source term is corrected using inference of gamma dose
measurements.

Secondly, for the purpose of data assimilation in the late phase, we extended the
idea of marginalized particle filtering to analytically intractable approximate filters,
e.g. ensemble filters. The result is a hybrid data assimilation methodology, where
multiple ensemble filters are run in parallel. The methodology was applied for joint
estimation of the spatial distribution of deposition on terrain and estimation of the
speed of radionuclides removal due to environmental processes in a simulated release
scenario.

The proposed methodologies are implemented in an assimilation subsystem, which
is a part of the decision support system HARP (HAzardous Radioactivity Propagation).
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Chapter 1

Introduction

1.1 Motivation

On June 27, 1954, the USSR’s Obninsk Nuclear Power Plant (NPP) became the world’s
first nuclear power plant to generate electricity for a power grid, and produced around 5
megawatts of electric power. Nowadays, there are more than 400 nuclear power reactors
in operation worldwide with the total share of 15% of produced electricity (Lillington,
2004). Although the old-fashioned reactors are replaced by the modern ones satisfying
strict safety criteria, there is still a potential for failures due to malfunctions, natural
disasters or man-made errors. This can result in a release of radioactive substances into
the environment (Saji, 2003).

In the case of a radiation accident, the risk evaluation and the decision-making
process focused on protecting the public have the highest priority. The task of the
decision support is to provide reliable and up-to-date information on the radiation
situation, prognosis of its future evolution and possible consequences. Knowledge of
spatial distribution of radionuclides and prediction of the future evolution are essential
for planning of effective countermeasures. Historically, accidents in nuclear facilities
have revealed unsatisfactory level of preparedness and lack of adequate modeling tools.
Great attention has been paid to this topic since the Chernobyl disaster (Onishi et al.,
2007). Nowadays, decision makers dispose of complex computer systems intended to
provide assistance to them throughout various phases of the accident, e.g., (Päsler-
Sauer, 2000; Pecha et al., 2007; Thykier-Nielsen et al., 1999).

During the last decades, a great progress has been made in our understanding the
atmospheric dispersion and related natural phenomena. Despite all the effort, the
stochastic nature of involved physical processes, the deficiencies in their mathematical
conceptualization and particularly ignorance of the initial conditions prevent obtaining
of accurate results. The only way how to attain satisfactory accuracy of the model
forecasts is exploitation of observational data, which represent the only connection
with the physical reality. Observations are often sparse in both time and space and it
is not possible to get a complete picture of radiological situation based on monitoring
data alone, especially during the first hours after the accident.
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Data assimilation provides a framework for optimal combination of numerical model
predictions and the available observational data (Kalnay, 2003). It makes possible to
consistently account for uncertainties in the model, its inputs and observations, and
produces probabilistic answers which are more informative than those deterministic.
Data assimilation is a compromise between the pure modeling approach on one hand and
the data mining approach on the other hand. Nowadays, data assimilation arise in many
scientific areas. The main fields of its application are meteorology, oceanography and
hydrology (Park and Xu, 2009; Wang et al., 2000). This work addresses the problem of
exploitation of advanced data assimilation methods in the field of radiation protection.

1.2 Data Assimilation in Radiation Protection

We are concerned with application of data assimilation in the case of a severe radiation
accident, when an accidental release of radionuclides into the environment occurred
and it is likely to require at least partial implementation of countermeasures. The main
objective of data assimilation is to estimate the true scale of the accident and predict
its consequences in order to improve reliability of the decision support through different
phases of the accident.

The time tract of an accidental release of radionuclides can be formally split into
two consecutive phases:

Early phase begins when the radionuclides are released into the environment. We
focus on atmospheric releases, when the effluent forms a radioactive plume ad-
vected by the wind field and dispersed by turbulent processes. The plume causes
external irradiation from cloudshine and internal irradiation due to inhalation.
Duration of this phase is from a few hours up to several days and let it formally
ends when the plume leaves the area of interest. The main objectives of data
assimilation in the early phase are (i) on-line estimation of radiation situation
and its evolution and (ii) estimation of committed population doses.

Late phase covers latter stages of the accident and immediately follows after the early
phase. After the plume passage, there is no more irradiation due to cloudshine,
however, on the ground remains deposited radioactive material. It causes ex-
ternal irradiation from groundshine and internal irradiation from inhalation due
to resuspension and ingestion. This phase ends when radiation levels resume to
background values. The main objectives of data assimilation in the late phase
are (i) identification of contaminated areas and (ii) estimation of radiation levels
and the speed of the radionuclides removal for purposes of long-term forecasting.
The estimates enter subsequent models of radionuclides propagation through the
different compartments of the environment.

Data assimilation is potentially applicable in both phases, however, different physical
processes, time scales etc., determine specific requirements on assimilation inputs and

2



target fields of predictions. The key properties of the early and the late phase are
summarized in Table 1.1.

1.3 State of the Art

1.3.1 Data Assimilation in the Early Phase

Particular data assimilation algorithm for the early phase must be constructed for a
given class of atmospheric dispersion models.

Assimilation of Lagrangian Particle Models

Lagrangian particle model is a Monte Carlo dispersion model, where the spreading of
pollutants is simulated using a large number of particles released from the source, each
of them carrying some elemental activity. Trajectories of particles are given by a me-
teorological forecast entering the model. Random perturbations are added to the wind
speed of the particles in order to simulate stochastic turbulent processes in the atmo-
sphere. In this model, the three-dimensional space is divided into partial volumes. At
each time step, movement of all the particles is traced and the activity concentration
in each partial volume is obtained by summing up the activity assigned to particles
within the volume. When a new set of observations is available, the assimilation proce-
dure is performed as a modification of the number of particles in the partial volumes,
e.g. (Zheng et al., 2007). Between consecutive measurement updates, the redistributed
particles are propagated forward in time by the meteorological forcing.

The advantage of Lagrangian models is their capability to account for many phys-
ical processes in a natural way. Their application in data assimilation allows for local
assimilation of the activity concentrations and thus the results better consider local
variations in terrain, meteorology etc. The disadvantage is the fact, that a large num-
ber of particle trajectories must be computed to simulate a release using this type of
model. Such an assimilation algorithm based on this approach model must be run on
a supercomputer in order to meet the strict time constraints in the early phase.

Assimilation of Parameterized Models

A substantial reduction of the computational complexity can be reached by the use
of a deterministic model parametrized by a set of control variables. The term control
variables refers to a selected subset of inputs to the model and parameters influencing
its result. The set is selected using the uncertainty and sensitivity studies performed
with dispersion models, (Eleveld et al., 2007; Rao, 2005; Twenhöfel et al., 2007). Given
some particular values of control variables, concentration in air is calculated simply
by evaluation of the model as a deterministic function of the variables. Contrary to
Lagrangian particle models, direct assimilation of concentration values in the grid points
is not possible with these models. Modification of the analytical shape of the plume
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would forbid its propagation in the next time step. Data assimilation is then formulated
as an optimization of the control variables in order to reach the best correspondence
of model forecast with available observations. These estimates may in turn re-enter
atmospheric dispersion models, resulting in a greatly improved dose rate assessment.
Parameters not included in the set of control variables are not treated as uncertain but
they are initialized with a fixed value.

The most simple methods for optimization of the control variables are not probabilis-
tic and minimize just a loss function measuring point-wise distance between model and
observations. Eleveld et al. (2007) presented a simple assimilation scheme for tuning of
the effective release height and the wind direction of the Gaussian plume model. This
idea is more developed in (Pecha and Hofman, 2008), where a segmented version of the
Gaussian plume model (Hofman et al., 2008) is used and the set of optimized control
variables is extended to address their time variability. The advantage of this method
is its simplicity and a potential for extension of the set of optimized control variables.
The disadvantage is the fact that the method does not consider error statistics of the
model and observations, contrary to variational methods, where the difference between
the model forecast and the observations is weighted with appropriate error statistics.
Assimilation schemes based on variational approach are described in (Jeong et al., 2005;
Kovalets et al., 2009; Quelo et al., 2005). Here, all the optimized control variables are
treated as time invariant.

More advanced methods are based on sequential data assimilation. Drews et al.
(2005) described extended Kalman filtering of the Gaussian plume. Here, the set of op-
timized control variables is restricted to the ratio of the release rate and the wind speed,
the wind direction and the plume height. Similar assimilation scheme is proposed in
(Astrup et al., 2004) describing assimilation of the RIMPUFF model (Thykier-Nielsen
et al., 1999). A continuous release is with the RIMPUFF (RIsø Mesoscale PUFF) model
approximated by a sequence of overlapping puffs. This allows inclusion of complex me-
teorological and other local characteristics. Control variables are radioactive inventories
of partial puffs and the wind direction affecting spatial positions of the puffs within the
computation domain. The number of control variables changes dynamically as new
puffs are released and other puffs leave the domain. This assimilation methodology
for the early phase is implemented in the RODOS (Real-time Online Decision Support
System for nuclear emergency management), (Palma et al., 2003).

1.3.2 Data Assimilation in the Late Phase

The basic aspects of modeling and assimilation in the late phase are formulated in (Ger-
ing et al., 2004). Modeling in the late phase covers a broad range of disciplines focusing
on different problems, e.g., contamination of arable soil and urban areas, contamination
of water resources, propagation of radionuclides in the food chain, etc. In (Yuschenko
et al., 2005), the method iterations to optimal solution is applied for assimilation of an
aquatic model with observations of the Black Sea contamination after the Chernobyl
accident. The details regarding this simple empirical interpolation method can be found
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in (Daley, 1993).
In (Palma, 2005), the ensemble Kalman filtering (EnKF) based data assimilation

system for assimilation of the groundshine measurements with a radio-ecological model
is described. The system is a part of the RODOS. EnKF introduced by Evensen (1994)
is proposed here as the most promising approach for data assimilation in the late phase.

1.3.3 Evaluation of Performance

The performance assessment of data assimilation methods is in the field of radiation pro-
tection problematic. The dispersion modeling of radioactive pollutants has its specific
properties and the existing data sets from experiments with non-radioactive pollutants
are not suitable. Since there is a lack of observational data sets from the real reac-
tor accidents, the measurements used for validation of data assimilation methods are
simulated using the twin experiments (Eleveld et al., 2007). It means, that the mea-
surements are generated using a model of the system under investigation, initialized
by some reference values. Observations are sampled from the model output fields in
locations of the receptor points. From the theoretic point of view, the twin experiments
are useful, because they make possible to evaluate assimilation performance against a
known “background truth” and the convergence can be easily assessed. The method also
provides a transparent tool for controlling of measurement error type and magnitude.

1.4 Specific Goals of the Dissertation

The contributions of this dissertation are presented in three separate parts. The first
part concerns development of the marginalized particle framework for analytically in-
tractable filters. The second and the third parts are devoted to the application of
particle filtering and marginalized particle filtering in the early and the late phase,
respectively. Specific goals of respective parts are discussed below.

The main contributions of the first part presented in Chapter 4 are as follows:

• The extension of marginalized particle filtering on analytically intractable ap-
proximative filters and formulation of a framework for on-line tuning of ensemble
filters resulting in a hybrid data assimilation method.

• The comparison of the new adaptive method with the “best tuned” ensemble filters
on data assimilation scenarios with 40-variable Lorenz-96 model.

The main contributions of the second part presented in Chapter 5 are as follows:

• The formulation of a new data assimilation methodology for estimation of selected
control variables of a parametrized atmospheric dispersion model in the Bayesian
framework using particle filtering.
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• The implementation of the Gaussian puff model and the nonlinear observation
operator transforming the activity concentration in air into the time integrated
gamma dose rate.

• The demonstration of the assimilation algorithm resulting from the new method-
ology on a simulated release scenario. The source term, the wind speed, and the
wind direction of the Gaussian puff model are estimated using the time integrated
gamma dose rate measurements.

The main contributions of the third part presented in Chapter 6 are as follows:

• The formulation of a new data assimilation methodology for the late phase in the
Bayesian framework and exploiting the extension of marginalized particle filtering
presented in Chapter 4.

• The implementation of the groundshine dose evolution model and the observation
operator for spatial interpolation of the deposition fields.

• The demonstration of the developed assimilation algorithm resulting from the
new methodology on a simulated release scenario. Spatial distribution of the de-
position on terrain is estimated together with the speed of radionuclides removal.

1.5 Outline of the Dissertation
The work is organized as follows: Chapter 2.1 gives a brief review of atmospheric disper-
sion modeling and relations between the basic radiological quantities. The atmospheric
dispersion model developed in this work is presented here. Chapter 3 describes the
theory of sequential data assimilation and puts it into context of Bayesian filtering.
A new method for tuning of ensemble filters is described in Chapter 4. Chapters 5
and 6 concern the proposed assimilation methodology for the early and the late phase,
respectively. A brief review of developed software is given in Chapter 7. Conclusion
and future research direction are given in Chapter 8.
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Chapter 2

Physical Background

2.1 Atmospheric Dispersion Modeling
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants
disperse in the ambient atmosphere. Dispersion models are computer codes solving
equations describing the propagation of pollutants given the initial conditions, i.e., the
meteorological conditions (wind speed and direction, precipitation) and the process
conditions (heat capacity of the plume, terrain roughness, etc.) prevailing in the atmo-
spheric boundary layer. Output from such a dispersion model is a 3-dimensional field
of pollutant concentration in air. In the case of radioactive pollutants, the output is
given in terms of activity concentration in air [Bqm−3].

Atmospheric dispersion models are basic tools for decision makers when assessing the
atmospheric radionuclide releases. The models predict concentration of pollutants in the
downwind directions from the source. Combined with the information on demography,
the models can estimate expected exposure of population to ionizing radiation, and
consequently, the health effects in terms of total committed doses. Nowadays, there
exist various approaches to atmospheric dispersion modeling.

2.1.1 From Advection to Diffusion

In the following text in this chapter, the subscript i iterates over the set {1, 2, 3} de-
noting the three spatial coordinates.

Following Barratt (2001), let us assume a release of a material into the atmosphere.
If no chemical reactions and molecular diffusion are assumed, the concentration of
material, C, resulting from the release is given by the advection equation

∂C

∂τ
+

∂

∂si
(uiC) = 0, (2.1.1)

where u = (u1, u2, u3) are the wind speed components in directions s = (s1, s2, s3)
and C = C(s, τ) is a function describing concentration of the pollutant in space and
time. As the actual wind speed is not known and it can not be incorporated into the
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equation, we assume that the wind speed at a certain time can be described according
to the scheme

ui = ui + u′i, (2.1.2)

where u is the mean wind speed during a time period and the second term u′ stands
for a stochastic component, fluctuation of the wind due to the momentary turbulence.
This scheme implies also fluctuation of the concentration

C = C + C ′, (2.1.3)

where C is the concentration taken over a time period and C ′ is a stochastic fluctuation.
The stochastic fluctuation terms are assumed to have zero mean values

C ′ = 0, u′i = 0. (2.1.4)

Substituting (2.1.2, 2.1.3) into (2.1.1) yields

∂C

∂τ
+

∂

∂si

[
(ui + u′i)(C + C ′)

]
= 0. (2.1.5)

Exploiting linearity of the differentiation operator ∂/∂si and averaging over time yields

∂C

∂τ
+

∂

∂si

(
uiC

)
+

∂

∂si

(
u′iC

′
)

= 0, (2.1.6)

where the terms u′iC ′ and C ′u′i are zero due to (2.1.4).
To describe the mean stochastic turbulent flux term u′iC

′, we introduce the eddy
diffusivity coefficientsKi. Turbulent diffusion is a diffusion process by which substances
are mixed in the atmosphere or in any fluid system due to eddy motion. As the turbulent
fluxes u′iC ′ can be measured only with fast-response instruments and it is difficult
to treat them theoretically by analogy with the molecular case, the turbulent flux is
commonly assumed to be directly proportional to the mean gradient

u′iC
′ = −Ki

∂C

∂si
, (2.1.7)

where Ki are diffusivity coefficients in units m2s−1. The negative sign is included so
that the flux is down the gradient, i.e., from the high values of C to the low values.
The mean wind components and the mean concentration represent average values over
the time scale Ta and the corresponding spatial scale sa. Typical values of Ta are a few
minutes in magnitude. Fluctuation in smaller scales is assumed to be turbulent and is
included in Ki . Substituting (2.1.7) into (2.1.6) gives

∂C

∂τ
+

∂

∂si

(
uiC

)
=

∂

∂si

(
Ki
∂C

∂si

)
. (2.1.8)
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Expanding the second term on the left side of (2.1.8) and assuming that the atmosphere
is incompressible,

∂u1

∂s1

+
∂u2

∂s2

+
∂u3

∂s3

= 0,

the second term on the left side of (2.1.8) vanishes and we obtain the advection-diffusion
equation

∂C

∂τ
+ ui

∂C

∂si
=

∂

∂si

(
Ki
∂C

∂si

)
. (2.1.9)

It describes the relationship between the spatial and the temporal behavior of concen-
tration. When combined with appropriate initial conditions and boundary conditions,
this equation forms the basis for the dispersion modeling and may be solved for vari-
ous scenarios. In this equation, both the pollution transport by the advection and the
diffusion due to the atmospheric turbulence are represented. However, (2.1.9) is not
possible to solve analytically for completely general functional forms for the diffusivity
coefficients Ki and the wind speed components ui.

2.1.2 Classifications of Air Pollution Models

Models vary considerably in their complexity, and may take account of different phys-
ical and chemical processes affecting the flow and transport. Different mathematical
expressions can be derived to represent these atmospheric processes. Consequently,
there is an enormous range of available atmospheric dispersion models. Comprehensive
review of atmospheric dispersion methodology is given, e.g. by Holmes and Morawska
(2006).

Box Models

This is a simple model, largely based on the concepts of conservation of mass and
conservation of energy. The treatment of transport is simplified, but the model is
capable to include complex chemistry. The model evaluates mass balance of a given
system using the conservation laws, where the particles of pollutant are transferred from
one domain of the environment to another. Inside a domain, the air mass is assumed
to be well mixed and concentration of the pollutant is assumed to be homogeneous.
Boundaries of the domains are boxes. For every pollutant, we can write the mass
balance equation:

Input rate = Output rate + Transformation rate + Accumulation rate

Depending on the physical and chemical interactions, some of the pollutants may pass
through the system unchanged, some may accumulate within the system, while some
may undergo chemical transformation or radioactive decay.
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The simplicity of the model implies that it requires simple meteorological inputs
and simple parametrization of the emission source. As it provides area-wide averages of
concentration for a given region, the box model is a useful tool for screening purposes,
where we need quick answers without any stress on accuracy. However, well-mixed and
homogeneous conditions are sometimes unrealistic and the box models should not be
used to calculate concentration in large areas, where the local changes must be reflected.
For more detailed modeling we need more complex models continuously tracking the
plume through the environment as it is advected by the wind, spread by diffusion,
mixed by turbulence and reflected or channeled by surfaces such as the ground and the
buildings (Barratt, 2001).

Lagrangian and Eulerian Models

Both the Lagrangian and the Eulerian models solve the same advection-diffusion equa-
tion. The difference between Lagrangian and Eulerian approach to modeling consists
in the different treatment of the frame of reference. The Lagrangian approach is based
on studying the property of a particular fluid by following its trajectory. Lagrangian
models are similar to the box models, where the region of air containing an initial con-
centration of pollutants is considered as a box (Gurjar, 2008). The box is considered
to be advected with the flow and the model follows the trajectory of the box. It is said
that an observer of a Lagrangian model follows along with the plume. The motion of
air parcels is modeled as a superposition of the mean wind speed and a random per-
turbations simulating chaotic nature of the atmosphere. It is a random walk process
indeed. Concentration is in the Lagrangian models evaluated in partial volumes (boxes)
forming a 3-dimensional grid. Average concentration in a given grid cell is evaluated
in a way that we sum up all the elemental concentrations associated with the particles
in the cell. The main advantage of Lagrangian models is the capability to account for
many physical processes in a natural way. They work well both for homogeneous and
stationary conditions over the flat terrain and for inhomogeneous and unstable media
conditions for the complex terrain. Particle dispersion model is an example of practical
implementation of a Lagrangian model (Zheng et al., 2007).

In Eulerian modeling, we also track the movement of a hypothetical parcel of air,
but we use a fixed frame of reference. The Eulerian approach is based on studying fluid
property in a control volume at a fixed point in space, that is, the control volume is
stationary and fluid moves through the control volume (Gurjar, 2008). It is said that
an observer of an Eulerian model watches the plume go by. Eulerian models use 2-
dimensional and 3-dimensional grids for solving the differential equations, e.g. (2.1.9),
where diffusion, transport, and removal of pollutant emission is simulated in each cell.

Gaussian Models

Gaussian models are widely used in atmospheric dispersion modeling, and are often
“nested” within Lagrangian and Eulerian models. They are based on a Gaussian dis-
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tribution of concentration in the plume in vertical and horizontal directions under the
steady state conditions (Zannetti, 1990; Holmes and Morawska, 2006). Gaussian models
are popular, particularly for the following reasons:

• The Gaussian models represent a solution of (2.1.9) under some simplifying as-
sumptions (e.g., constant wind and eddy diffusivity coefficients) and they are
consistent with the random nature of the turbulence.

• Their simplicity allows for fast evaluation even with small computational re-
sources. This is an essential property when we attempt to employ assimilation
techniques based on Monte Carlo approach, when the model must be repeatedly
run for many times.

• The analytical form of the Gaussian models allows for a good insight and a trans-
parent evaluation of experimental results.

• The Gaussian models are easy to implement and they can be embedded into
various forecasting and assimilation systems.

• Validity of the Gaussian models was satisfactorily verified for different meteoro-
logical conditions via comparison to the results of field tests with tracer releases,
when the agreement of measured and modeled concentration was assessed, e.g.
(Carruthers et al., 1995).

Gaussian models are not designed to model dispersion under low wind conditions or at
sites close to the source, i.e., at distances closer than 100m. It was found that these
models over-predict concentrations in low wind conditions (Hanna et al., 1982).

Gaussian models—in their basic form—assume just the diffusion and advection of
the pollutants. Modified versions of the Gaussian models are capable to include physical
processes such as dry and wet deposition and radioactive decay (Hofman et al., 2008).
We can distinguish two main variants of the Gaussian models. The Gaussian plume
model assumes a continuous release when a plume in the downwind direction is formed
under stationary conditions. The Gaussian puff model assumes a sudden instantaneous
release when an expanding puff is formed.

Computational Fluid Dynamics Models

Computational fluid dynamics models are able to deal with the fluid flux in a complex
geometry by solving the Navier-Stokes equation and the continuity equation when the
flow is idealized as a laminar flow (Gurjar, 2008). These two equations can be solved
simultaneously using finite difference or finite volume methods. If the flow is turbulent,
the Reynolds Navier-Stokes equation with the continuity and turbulence closure models
is used for this case (Tennekes and Lumley, 1972).
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Figure 2.1.1: Illustration of the Gaussian plume model.

Summary

In this work, we focus on parametrized Gaussian models which are discussed in more
detail in the following section.

2.1.3 Gaussian Models

To simplify the notion, we omit the overbars denoting the average values of C and ui
in the following text.

Gaussian Plume Model

Gaussian plume model is obtained as a 3-dimensional, time independent solution of
(2.1.9) for a continuous source at the ground level, constant ui and Ki, and a flat
terrain. Gaussian plume models gives us a steady-state solution, i.e., the model does
not take into account the time required for the pollutant to travel to the receptor and
describes concentration in a fully established plume under stationary meteorological
conditions.
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Let us assume a continuous point-source ground-based release of mass Q with time
constant coefficients Ki and wind speed components ui. The wind is assumed to blow
along the direction of s1-axis (u = (u1, 0, 0)) of an Eulerian coordinate system with the
origin aligned with the source location. We can assume that the advection dominates
diffusion in the downwind direction,

u1
∂C

∂s1

>>
∂

∂s1

(
K1

∂C

∂s1

)
.

The diffusion in this direction can be then neglected and the basic equation (2.1.9)
modified for the steady-state conditions is

u1
∂C

∂s1

=
∂

∂s2

(
K2

∂C

∂s2

)
+

∂

∂s3

(
K3

∂C

∂s3

)
. (2.1.10)

The boundary conditions for solution of (2.1.10) are:

1. C → 0 for r =
√
s2

1 + s2
2 + s2

3 → +∞,

2. C → +∞ for r → 0,

3. K3
∂C
∂s3
→ 0 for s3 → 0,

4.
´ +∞

0

´ +∞
−∞ u1C ds2ds3 = Q.

Here, Q defines a continuous point-source in terms of released mass per time (activity
per time in the case of a radioactive release). The first two conditions represent our
requirements on the concentration values at zero and infinite distances from the source.
Condition 3 expresses the fact that we assume no sedimentation on the ground and
condition 4 is the formalization of the law of conservation of the released mass (activity).
The appropriate solution for constant wind and diffusivity coefficients is

C(s) =
Q

4πs1

√
K2K3

exp

[
− u1

4s1

(
s2

2

K2

+
s2

3

K3

)]
. (2.1.11)

Since the values of diffusion coefficients is difficult to measure, we use dispersion coef-
ficients defined as

σi =
√

2Kiτ . (2.1.12)

The dispersion coefficients are usually functions of the atmospheric stability category
and the downwind distance from the source. Substitution of (2.1.12) into (2.1.11) gives
us a time independent formula for concentration in a developed Gaussian plume

C(s) =
Q

2πu1σ2σ3

exp

(
− s2

2

2σ2
2

)
exp

(
− s2

3

2σ2
3

)
. (2.1.13)

The coefficients σ2 and σ3 represent the standard deviations of the concentration in the
cross-wind (s2) and vertical (s3) planes, respectively. Larger values of the coefficients
mean broader distribution and consequently higher dilution of pollutant and smaller
concentration.
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Gaussian Puff Model

Contrary to the plume models, the puff models are applicable when mean wind vector
transporting the puff is variable in space and time. Using the puff model, these vari-
ations can be directly incorporated in a numerical scheme whereby they are used to
transport the center of the puff. Dispersion of the puff (Gaussian distribution) is evalu-
ated using the concept of virtual source at each time step. The characteristic feature of
these models is that the calculation of pollutant diffusion, transportation, and removal
is performed in the Lagrangian frame of reference attached to a number of parcels as
they are transported around the geographical region of interest. Approximation of a
continuous release is reached by simultaneous propagation of multiple puffs. Under
assumption of stationarity, spatially homogeneous flow of multiple puffs over the flat
terrain represents the Gaussian plume model, which is demonstrated in (Jung et al.,
2003). The overall concentration is evaluated as a superposition of the puffs (Ludwig
et al., 1977; Zannetti, 1986).

The form of (2.1.9) describing advection and diffusion of a single puff is

∂C

∂τ
+ u1

∂C

∂s1

=
∂

∂s1

(
K1

∂C

∂s1

)
+

∂

∂s2

(
K2

∂C

∂s2

)
+

∂

∂s3

(
K3

∂C

∂s3

)
. (2.1.14)

We solve (2.1.14) with the following boundary conditions:

1. C → 0 for r =
√
s2

1 + s2
2 + s2

3 → +∞,

2. C → +∞ for r → 0,

3. K3
∂C
∂s3
→ 0 for s3 → 0,

4.
´ +∞

0

´ +∞
−∞

´ +∞
−∞ C ds1ds2ds3 = Qi.

Here, Qi defines an instantaneous point-source in terms of released mass (activity in
the case of a radioactive release). Analytical solution for the given case describing the
concentration of pollutant everywhere in space is

C(s, τ) =
Qi

8(πτ)3/2
√
K1K2K3

exp

{
− 1

4τ

[
(s1 − u1τ)2

K1

+
s2

2

K2

+
s2

3

K3

]}
. (2.1.15)

After substitution of dispersion coefficients σi for the eddy diffusivity coefficients Ki

we obtain equation of the Gaussian puff. Under general conditions, a puff located in
sP = (sP

1,s
P
2 , s

P
3 ) in time τ generates the concentration field

C(s, τ) =
Qi

(2π)3/2σ1σ2σ3

exp

{
−1

2

[(
sR

1 − sP
1

)
σ2

1

2

+

(
sR

2 − sP
2

)
2

σ2
2

+

(
sR

3 − sP
3

)2

σ2
3

]}
,

(2.1.16)
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at a receptor located at sR = (sR
1 , s

R
2 , s

R
3 ). Similarly to the plume model, coefficients

σ1, σ2 and σ3 represent the standard deviations of the concentration in the downwind
(s1), cross-wind (s2), and vertical (s3) planes, respectively.

Parametrization of Dispersion Coefficients

Variability of temperature with altitude influences the turbulence characteristics and
thus the dispersion of pollutants. The temperature in the atmosphere is governed
by incident solar radiation, prevailing wind velocity, and percentage of cloud cover.
Depending on the magnitude of these parameters, Pasquill (1961) introduced the six
stability classes named A, B, C, D, E, and F of the atmospheric turbulence. Class A
denotes the most unstable or most turbulent conditions (the dispersion is higher), and
class F the most stable or the least turbulent class (very low dispersion).

Besides the atmospheric stability category, dispersion coefficients are also depen-
dent on travel time from the source and the type of terrain (urban, rural, etc.), e.g.
(Gifford, 1976). The comprehensive review can be found in (Hanna et al., 1982). More
advanced models apply Monin-Obukhov similarity theory and use the surface roughness
length and the Monin-Obukhov length to determine the magnitude of dispersion, see
(Cheremisinoff, 2002; Cimorelli et al., 2004).

Elevated Sources and Reflections

The last exponential terms in (2.1.16) and (2.1.13) stand for exponential concentration
profiles in the vertical direction. Let the terms be denoted as V ,

V = exp

[
− s2

3

2σ2
3

]
. (2.1.17)

In the most of real situations we assume, that the source is elevated over terrain in a
height H. Moreover, if the effluent has a heat capacity or an initial vertical momentum,
the height of the plume reaches so called effective height Hef . It is a sum of the release
height H and the height change due to the plume rise or subsidence ∆H,

Hef = H + ∆H.

Vertical dispersion is usually assumed to be a growing function of the downwind
distance, σ3 = σ3(r). The form of (2.1.17) suggests that the vertical expansion of a
puff or plume can be infinite. This is, of course, not possible in reality . The Gaussian
distribution of the concentration is modified at greater distances from the source due
to the effects of turbulent reflections from the surface. When the pollutant reaches the
ground due to the vertical dispersion, the further spreading in vertical direction is not
possible and it is assumed that at the surface is the pollutant reflected without any
loss. Reflection on the ground is modeled as a virtual source at the effective height
Hef below the ground. To account for the elevated source and the ground reflection we

17



Figure 2.1.2: Illustration of the principle used for modeling of the reflections as a
superposition of multiple plumes released from virtual sources below the ground and
above the top of mixing layer .

modify the vertical dispersion term as follows,

V1 = exp

[
−(s3 −Hef)

2

2σ2
3

]
+ exp

[
−(s3 +Hef)

2

2σ2
3

]
.

Puff or plume can be also reflected from the top of mixing layer. In such a case, the
vertical profile of the plume is bounded by the ground and the top of mixing layer at
height Hmix. Theoretically, the number of reflections can be infinite. However, multiple
reflections on the ground and at the top of mixing layer lead to vertical homogenization
of concentration and numerical experiments proved that one virtual source below ground
and one at the top of the boundary layer gives sufficient accuracy (Barratt, 2001),

V2 = exp

[
−(s3 −Hef)

2

2σ2
3

]
+ exp

[
−(s3 +Hef)

2

2σ2
3

]
+ exp

[
−(s3 − 2Hmix −Hef)

2

2σ2
3

]
+ exp

[
−(s3 + 2Hmix −Hef)

2

2σ2
3

]
+ exp

[
−(s3 − 2Hmix +Hef)

2

2σ2
3

]
+ exp

[
−(s3 + 2Hmix +Hef)

2

2σ2
3

]
. (2.1.18)

The principle used for modeling of the reflections as a superposition of multiple plumes
released from virtual sources is illustrated in Figure 2.1.2.
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2.2 Radiological Quantities
In this section we briefly describe some essential radiological quantities used in this
work and their relations.

2.2.1 Radioactive Decay and Radioactivity

Radioactive decay is a spontaneous nuclear transformation followed by an emission of
ionizing particles. As the decay of an unstable nucleus is entirely random and it is
not possible to predict when a particular atom will decay, it is described in terms of a
continuous quantity N(τ), mean value of radioactive (undecayed) atoms in time τ .

Given a sample of a particular radioisotope, the number of decay events (−dN(τ))
expected to occur in a small interval of time dt is proportional to the number of atoms
present:

− dN(τ)

dτ
= λN(τ). (2.2.1)

The negative sign indicates that the mean value of radioactive atoms N(τ) decreases
with each decay event and λ is the proportionality constant known as the decay constant.
Particular radionuclides decay at different rates, each having its own λ (there are more
than 500 different nuclides). Solution of the first order differential equation (2.2.1) is a
function

N(τ) = N0 exp(−λ τ), (2.2.2)

where N0 is the number of radioactive atoms in time t = 0.
The decay rate is denoted as activity, A(τ), which is a basic physical unit quan-

titatively describing physical phenomena radioactivity. Activity is a measure of the
expected number of disintegrations per unit time (Choppin et al., 2002),

A(t) = −dN(τ)

dτ
.

Since A(τ) is proportional to the mean number of atoms N(τ), we can write

A(τ) = A0 exp(−λ τ), (2.2.3)

where A0, analogously to N0, is the activity in time τ = 0. Although the radioactive
decay is a discrete random process, the continuous exponential functions (2.2.2) and
(2.2.3) are for large numbers of atoms (comparable to Avogadro’s number in magnitude)
a good approximation.

Mean lifetime τm of an atom before it undergoes the decay is inversely proportional
to λ,

τm =
1

λ
.
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Even more common is the use of physical half-life, T1/2, which is the time needed to
reduce the amount of radioactive material by a factor of 2. The formula

N(τ)

N0

=
1

2
= exp(−λT1/2)

yields

T1/2 =
ln 2

λ
. (2.2.4)

Introducing the physical half-life (2.2.4) into (2.2.3), we get the decay law

A(τ) = A0 exp

(
− ln 2

τ

T1/2

)
. (2.2.5)

The SI unit for radioactivity is Becquerel (Bq) and the activity is given in reciprocal
seconds, s−1,

1 Becquerel (Bq) = 1 (disintegration) s−1.

In the field of dispersion modeling of radionuclides, we evaluate activity concentra-
tion in air , which is a number of disintegration of a dispersed radionuclide in a unit
volume per unit time, i.e., its unit is Bqm−3. It is a quantity of particular importance
because it can be used for evaluation other radiological quantities like deposition and
doses.

2.2.2 Calculation of Absorbed Doses

The absorbed dose (also known as the total ionizing dose) is a measure of the energy
deposited in a medium by ionizing radiation. It is equal to the energy deposited per
unit mass of medium. Its unit J kg−1 was given the special name Gray (Gy).

Absorbed Dose from Cloudshine

The cloudshine is external gamma radiation from a radioactive plume passing over the
terrain. The simplest way of cloudshine dose rate calculation is based on approxima-
tion of the plume as a semi-infinite hemisphere with homogeneous concentration of
radionuclides (Raza et al., 2001; Thykier-Nielsen et al., 1995). Resulting formula for
the gamma dose rate at a receptor R located at sR = (sR

1 , s
R
2 , s

R
3 ) is

Dc(s
R, τ) = K

E C(s, τ)

2ρ
, (2.2.6)

where s = (s1, s2, s3) is a spatial location; K is the dose rate conversion factor [Gy kg eV ];
E is the gamma energy produced by decay of assumed radionuclide; C(s, τ) is radionu-
clide concentration [Bqm−3] in spatial location s; and ρ is the air density. This formula
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assumes an equilibrium between the gamma energy released in the plume and that ab-
sorbed in the air. Approximation of a non-homogeneous plume (e.g. Gaussian) using
the semi-infinite approach may lead to large errors. What is more, if the receptor point
in not immersed in the radioactive cloud, the application of (2.2.6) is not well-founded
at all.

The general expression for the effective flux of gamma rays at a receptor point sR

from a source of ionizing radiation dispersed in air is according to Thykier-Nielsen et al.
(1995), as follows,

Φ(sR, τ, E) =

ˆ
Ω

f(E)C(s, τ)B(E, µr) exp(−µr)
4πr2

ds, (2.2.7)

where f(E) is the branching ratio to the specific energy E; B is the build up factor; µ is
the linear attenuation coefficient; Ω is a spatial domain of integration; and r = ||sR−s||
is the distance of spatial locations sR and s. The build-up factor can be calculated from
Berger’s analytical formula

B(E, µ r) = 1 + a µr exp(b µr),

where coefficients µ, a and b depend on E. Energy dependent absorption coefficient µa
is calculated using

µa =
µ

1 + a
(1−b)2

.

The gamma dose rate from a mixture of nuclides emitting gamma radiation on different
energy levels Ei, i = 1, . . . , NE, is

Dc(s
R, τ) =

NE∑
i

Ki µEi Φi

ρ
.

For a plume of a mono-energetic radionuclide dispersed in air emitting gamma radiation
on a single energy level E, i.e. f(E) = 1, we obtain

Dc(s
R, τ) =

K E µa
ρ

ˆ
Ω

C(s, τ)B(Eγ, µr) exp(µr)

4πr2
ds. (2.2.8)

The time integrated gamma dose rate Dc(sR, τ1, τ2) integrated over the time interval
(τ1, τ2) is defined as

Dc(sR, τ1, τ2) =

ˆ τ2

τ1

Dc(s
R, τ) dτ. (2.2.9)

In the case of Gaussian models, concentration C(s) is given by the analytical formu-
las (2.1.16) and (2.1.13). Specifically, the simplicity of the Gaussian puff model (2.1.16)
allows for numerical evaluation of the integral in (2.2.8) on a compact support where
the activity concentration is not negligible.
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Absorbed Dose from Groundshine

The groundshine is the external gamma radiation from radioactive material deposited
on the ground, trees, buildings etc. (Golikov et al., 1999). Given deposition SD(s, τ)
in location s and time τ , the groundshine dose rate Dg(s, τ) is calculated as follows,

Dg(s, τ) = DFg SD(s, τ)SF, (2.2.10)

where the coefficient of proportionality DFg is the radionuclide-dependent integrated
dose rate conversion factor for groundshine in units Sv s−1 perBqm−2. Unit-less shield-
ing factor SF is defined as

SF =
∑
i

fi SFi,

where fi is ith fraction of time spent in different places (indoor, outdoor, etc.) and
SFi ∈ [0, 1] is the shielding factor at each place.

The time evolution of the deposition is modeled according to the standard formula

SD(s, τ) = SD(s, 0)fR(τ)fE(τ), (2.2.11)

where SD(s, 0) is initial deposition in time τ = 0; fR(τ) is a function taking into
account radioactive decay (2.2.5) in terms on relative amount of undecayed material
in time τ ; and fE(τ) a function taking into account decrease of radioactivity due to
the environmental removal processes. Environmental removal is a general term refer-
ring to different processes causing radioactivity removal from terrain, e.g., radionuclide
migration deeper into the soil, weathering, leaching.

An adequate description of the long term dynamics of radionuclides in soil is the
most important factor in the correct estimation of the radioactive contamination of local
agricultural and forest products, which has a major contribution to the exposure of the
local population. There exist several computer codes implementing formulas (2.2.10)
and (2.2.11). Their comprehensive review can be found in (Thiessen et al., 2005). In
calculation of the groundshine dose, the main difference among the codes consists in
different descriptions of fE(τ) and in application of different numerical values of SF
and DFg (IAEA, 2003).

We adopt groundshine dose model from Japanese code OSCAAR (Off-Site Conse-
quence Analysis Code for Atmospheric Releases in reactor accidents) (Homma, 2002).
Environmental removal is in (2.2.11) modeled using

fE(t) = df exp

(
− ln 2

t

T f

)
+ ds exp

(
− ln 2

t

T s

)
, (2.2.12)

where the rate of environmental decay is modeled as a superposition of two exponentials,
fast and slow components with fractions df , ds > 0; df + ds = 1, and removal half-times
T f , T s.

Illustration of the relative decrease of goudnshine dose from deposition of 134Cs in
time due to the radioactive decay and the environmental removal is in Figure 2.2.1.
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Figure 2.2.1: Illustration of the relative decrease of groundshine dose from deposition
of 134Cs in time due to the radioactive decay and the environmental removal.

Radionuclide 134Cs has the half-life of radioactive decay T1/2 = 2.0648 years. We see,
that after 24 months, the exponential function describing the radioactive decay (green
line) falls approximately to 0.5 of the initial value. The blue line represents the total
134Cs removal due to the environmental removal (red line) and the radioactive decay.
Values of coefficients in (2.2.12) were set to some reference values.

2.3 Developed Atmospheric Dispersion Model
For purposes of testing of assimilation algorithms developed in subsequent chapters,
we implemented a simple Gaussian puff model. In this chapter, we describe the model
and numerical schemes used for calculation of the activity concentration in air under
variable meteorological conditions and the corresponding cloudshine at a ground based
receptor.

2.3.1 Model Inputs and Outputs

The implemented model has the following meteorological and radiological inputs:

1. wind speed [ms−1]

2. wind direction [deg]

3. Pasquill atmospherics stability category ∈ {A,B,C,D,E, F} for determination
of the dispersion rate and the height of mixing layer
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4. magnitude of release [Bq]

5. radionuclide dependent half-life of decay [s]

6. effective height of release [m]

7. type of radionuclide parameterizing the dry deposition

The wind speed and the wind direction are valid for the whole computational domain at
a time. During the puff propagation, we assume the terrain flat. Given the inputs, the
model calculates following radiological quantities on an arbitrary computational grid:

1. activity concentration in air [Bqm−3],

2. time integral of activity concentration in air [Bq sm−3],

3. surface deposition [Bqm−2],

4. time integral of surface deposition [Bq sm−2],

5. gamma dose rate [Gy s−1],

6. time integral of gamma dose rate [Gy].

2.3.2 Numerical Evaluation of Gaussian Puff Model under Vari-
able Meteorological Conditions

Activity concentration in air is calculated using (2.1.16) in a consecutive time steps.
Between discrete time steps t and t + 1, the time integral of activity concentration in
air in a spatial location s is approximated using the difference equation

C(s, k + 1) = C(s, k)
σ1(k)σ2(k)σ3(k)

σ1(k + 1)σ2(k + 1)σ3(k + 1)

G(k + 1)

G(k)

V2(k + 1)

V2(k)
∆fk→k+1, (2.3.1)

G(k) = exp

[
−
(
s1 − sP

1 (k)
)

2σ2
1(k)

2

−
(
s2 − sP

2 (k)
)

2σ2
2(k)

2
]
.

Here, k = 1, . . . , Nk, are indices of partial integration steps between time instances t
and t+1; sP(k) = (sP

1 (k), sP
2 (k), sP

3 (k)) are coordinates of the puff center in time k; σi(k)
are values of dispersion coefficients in time k; G(k) is a term accounting for horizontal
dispersion in time k; V2(k) is a term given by (2.1.18) accounting for vertical dispersion
of the puff in time k; and ∆fk→k+1 stands for removing of activity from the puff during
elemental shifts. The last term is given as follows,

∆fk→k+1 = fk→k+1
R fk→k+1

D ,

24



Figure 2.3.1: Illustration of numerical integration scheme of the Gaussian puff propaga-
tion. Between time steps t and t+ 1 , the puff is integrated forward in using elemental
shifts k.

where the factors ∆fk→k+1
R and ∆fk→k+1

D stand for magnitude of radioactive decay of
the considered isotope and the puff depletion due to the dry deposition, respectively.
The decay factor ∆fk→k+1 < 1 is evaluated using (2.2.3). In the case that the assumed
radionuclide is a noble gas, the puff is not depleted during elemental shifts.

Generally, the time integrated concentration of activity in air is given by

C(τ1, τ2, s) =

ˆ τ2

τ1

C(s, τ)dτ, (2.3.2)

where τ1, τ2 , τ2 > τ1, are arbitrary time instances. It can be approximated with forward
differences using (2.3.1) as

C(τ1, τ2, s) ≈
Nk∑
k=1

C(s, τ1 + ∆kk) + C(s, τ1 + ∆k(k + 1))

2
∆k, (2.3.3)

where Nk is the number of partial steps of length ∆k between τ1 and τ2, i.e., τ2 − τ1 =
Nk∆k. If the time difference ∆k is small enough, (2.3.3) gives us a good approximation
of (2.3.2). The numerical integration scheme is illustrated in Figure 2.3.1.

The main advantages of this step-wise approach consist in the fact, that the puff can
be propagated using different meteorology in each time step t. Besides the radioactive
decay and the dry deposition, it is possible to include more physical and chemicals
processes affecting the inventory of the plume, e.g., the wet deposition, buildup of
daughter decay products, (Pecha et al., 2007).
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parameter description range step unit
σ1 = σ2 horizontal dispersion coefficients 10-1000 20 m
σ3 vertical dispersion coefficient 10-1000 20 m
r distance of the puff center to receptor 50-10000 50, 100, 500 m

Table 2.1: Discretization of parameters for evaluation of pre-calculated values of gamma
dose rate from a radionuclide 41Ar dispersed in air.

2.3.3 Numerical Evaluation of Cloudshine Dose Rate

Evaluation of (2.2.9) is not straightforward. From (2.2.7)–(2.2.9) is obvious, that the
integration must be performed over both time and space domains. For the time inte-
gration of effective flux of gamma rays in (2.2.9), we use a numerical scheme similar to
(2.3.3) based on a difference equation (2.3.1) ,

τ2ˆ

τ1

Φ
(
sR, τ, E

)
dτ ≈

Nk∑
k=1

Φ(sR, τ1 + ∆kk,E) + Φ(sR, τ1 + ∆k(k + 1), E)

2
∆k, (2.3.4)

where Nk is the number of partial steps of length ∆k between τ1 and τ2, i.e., τ2 − τ1 =
Nk∆k. In the formula, we have to calculate the effective flux of gamma rays (2.2.7) in
each partial step k = 1, . . . , Nk. It is a function of the activity concentration in air C
integrated over a spatial domain Ω.

Since a single evaluation of (2.2.7) is time consuming, its values were pre-calculated
for a selected set of discretized inputs and stored in a multidimensional field. Function
C(s, τ) in (2.2.7) is given by the Gaussian puff model. We exploit its simplicity. Since
we assume an instantaneous release, the coefficient Qi describing the amount of released
material is time independent. Spatial distribution of activity concentration in air is in
this case linearly dependent on Qi. It means, given a reference value Φref of (2.2.7)
calculated with the nominal value Qi

ref = 1Bq , corresponding value for an arbitrary Qi

can be simply obtained by multiplying Φref with Qi as follows,

Φ(sR, E, Qi) = Qi Φref(s
R, E, 1Bq).

During the puff propagation, values of Φ depend on the concentration profile given
by dispersion coefficients σ1, σ2, σ3, and the distance r of the receptor point to the puff
(measured as a distance of the receptor to the puff center). We discretized these three
parameters and pre-calculated values of Φref for a set of their reasonable combinations.
The list of discretized parameters together with their ranges and discretization steps
are in Table 2.1. Simplicity of the Gaussian puff model (2.1.16) allows for numerical
evaluation of integral (2.2.7) on a finite support where the concentration is not neg-
ligible. Due to exponential functions involved in concentration profiles, the values of
activity concentration in air are theoretically positive everywhere in space, but they
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fall dramatically to zero. If the spatial integration in (2.2.7) is performed over a box Ω
centered at the puff center sP = (sP

1 , s
P
2 , s

P
3 ),

Ω = (sP
1 − 3σ1, s

P
1 + 3σ1)× (sP

2 − 3σ2, s
P
2 + 3σ2)× (smin

3 , smax
3 ),

we account for approximately 94% of the released material, which is for our purposes
sufficient. The last interval (smin

3 , smax
3 ) providing the integration limits in the vertical

direction must be chosen with respect to limitations given by the ground and the height
of the mixing layer Hmix:

smin
3 = max{0, sP

3 − 3σ3},
smax

3 = min{Hmix, s
P
3 + 3σ3}.

Definite integrals Φref(s
R, τ1+∆kk,E), k = 1, . . . , Nk, are approximated using the Gaus-

sian quadrature method. We use the implementation contained in numerical module
Integrate of the scientific extension SciPy of the Python scripting language. During the
model propagation, the pre-calculated values Φref are used for fast calculation of the
gamma dose rates approximated by the difference equation

Dc(τ1, τ2, s
R) ≈ QiKµaE

ρ

Nk∑
k=1

Φref(s
R, τ1 + ∆kk,E) + Φref(s

R, τ1 + ∆k(k + 1), E)

2
∆k,

(2.3.5)
where τ2 − τ1 = Nk∆k.

If the radioactive plume is large compared to the mean free path of the gamma rays,
then the semi-infinite cloud approximation of the effective flux can be successfully used.
See (Overcamp and Fjeld, 1987) for more details.
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Chapter 3

Data Assimilation

3.1 Introduction and Terminology

Data assimilation results from the methods of objective analysis introduced in the
middle of the 20th century in order to eliminate a subjective human factor in numerical
weather prediction (Daley, 1993). It refers to a group of mathematical methods for
estimation of a state of a dynamic system by the means of combining multiple sources
of information, typically observational data with a numerical model of the system under
investigation. We are concerned with 4-D data assimilation, where the assimilation is
performed in time and space.

3.1.1 Data Assimilation Cycle

Data assimilation is performed in cycles, where each the assimilation cycle has two
steps. Adopting the generally accepted data assimilation terminology unified in (Ide
et al., 1997), the first step, the data update, can be described as follows: Given the
model forecast (so called background field) and the observations, the data update pro-
duces their statistically optimal combination called analysis . It is an estimate of the
current system state considered to be better both the standalone model forecast and
the observations. Essentially, the analysis step tries to balance the uncertainty in the
data and in the forecast. In the second step, the time update, the analysis is integrated
forward in time using the model equations. This becomes the new forecast in the next
assimilation cycle. Periodic updating of the model with observations should ensure that
the model will not diverge from the physical truth.

Illustration of the sequential data assimilation process is in Figure 3.1.1: Let the
system state be a one-dimensional continuous random variable estimated in discrete
time steps. Observations available in discrete time steps represent a connection with
the physical reality and can be understood as a noisy samples from the true state
represented by the blue curve. Observations are denoted with squares and the green
circles represent their uncertainty. In each time instance, the best state estimate—
analysis denoted by asterisk—is produced on basis of current model forecast (plus sign)
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and observations. The red and yellow circles represent the uncertainties of forecast and
analysis, respectively. In the figure is schematically depicted that the forecast error is
reduced in each time step after the data update (yellow dashed line). The red dashed
line represents the time update step, when the analysis is advanced via the model
forward in time.

Figure 3.1.1: Illustration of basic principle of sequential data assimilation.

3.1.2 Identification of Data Assimilation with Bayesian Estima-
tion

Bayesian approach is based on quantifying uncertainty in statistical inference via prob-
ability density functions (pdfs). The importance of such approach is justified by the
fact, that it facilitates a common-sense interpretation of statistical conclusions (Gelman,
2004).

If we think of the forecast and the analysis as of pdfs, the data assimilation can
be understood as a particular case of recursive Bayesian estimation (Peterka, 1981).
In the Bayesian framework, the forecast and the analysis are represented by the prior
pdf and posterior pdf, respectively. When no measurements are available, the pdf
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of the considered state must be rather wide to cover all possible realizations of the
state. Each incoming measurement brings information about the “true” state, reducing
the original uncertainty. In effect, with increasing measurements, the posterior pdf
is narrowing down around the best possible estimate. From the Bayesian point of
view, data assimilation is analogical to the problem of filtering, i.e., characterizing the
distribution of the state of the hidden Markov model at the present time, given the
information provided by all of the observations received up to the present time. Data
update step of the assimilation cycle is implemented using Bayes formula.

3.2 Recursive Bayesian Filtering

The task of data assimilation can be interpreted as a problem of inference of a discrete-
time stochastic process :

xt ∼ p(xt|xt−1), (3.2.1)
yt ∼ p(yt|xt). (3.2.2)

Here, xt ∈ RNx is a vector known as the state variable, yt ∈ RNy is a vector of ob-
servations, t is the time index, and p(·|·) denotes the conditional pdf of the variable.
State evolution model (3.2.1) describes the evolution of the state variables xt over time,
whereas the measurement model (3.2.2) explains how the measurements yt relate to
the state variables.

System given by (3.2.1)–(3.2.2) is rather general. It represents a Markov process of
the first order, where realization of the process at time t contains all the information
about the past, which is necessary to calculate its future behavior. In data assimilation
we often restrict to its special case, where the explicit expressions for both the state
model and the measurement model exist. This results in a discrete-time state-space
models with additive noise represented by a set of difference equations (Jazwinski,
1970):

xt = Mt(xt−1) + wt, (3.2.3)
yt = Ht(xt) + vt. (3.2.4)

The state transition operator Mt : RNx → RNx integrates the state forward to the
next time step. The observation operator Ht : RNx → RNy transforms vectors from
the state-space to the space of observations and makes them thus comparable with the
observations. In environmental modeling, these operators represent our mathematical
conceptualization of the physical reality under investigation. Vectors wt and vt with
appropriate dimensions represent mutually independent noise processes of the model
and the observations, respectively.

31



Formally, the prior distribution p(x0) representing uncertainty of the forecast in
time t = 0 is transformed into the posterior pdf p(xt|y1;t) using measurements y1:t =
[y1, . . . ,yt] by recursive application of the data update and the time update:

1. Data update:

p(xt|y1:t) =
p (yt|xt) p (xt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|xt)p(xt|y1:t−1)´
p(yt|xt)p(xt|y1:t−1)dxt

, (3.2.5)

2. Time update:

p(xt+1|y1:t) =

ˆ
p(xt+1|xt)p(xt|y1:t)dxt. (3.2.6)

Given the prior pdf p(xt|y1:t−1) representing uncertainty in the forecast in time t, we use
Bayes formula (3.2.5) and evaluate the posterior pdf p (xt|y1:t) representing uncertainty
in the analysis in time t. Likelihood function p(yt|xt) is defined by the observation
model (3.2.4). In recursive Bayesian filtering, we exploit the fact that if the prior pdf is
properly chosen from a class conjugate to (3.2.2), the formula (3.2.5) yields a posterior
pdf of the same type.

Chapman–Kolmogorov equation (3.2.6) (Jazwinski, 1970) advances the the posterior
p (xt|y1:t) in time and produces the forecast in time t + 1 represented by the prior
p(xt+1|y1:t). Pdf p(xt+1|xt) is called the state transition pdf and represents model
dynamics given by (3.2.3). Integration in (3.2.5)–(3.2.6) and everywhere else in this
work is performed over the maximum support of the integrand, if not stated otherwise.

Using posterior p (xt|y1:t), we can evaluate the expected value of a function f(·) of
xt integrable with respect to p(xt|y1:t), (Doucet et al., 2001):

E[f(xt)|y1:t] =

ˆ
f(xt)p(xt|y1:t)dxt. (3.2.7)

Evaluation of (3.2.5) and (3.2.6) may involve integration over complex spaces and
in the most cases it is computationally infeasible. Thats the reason why were developed
methods for solution of the problem under simplifying conditions or methods providing
some sub-optimal, but still satisfactory, solution. In the following text we briefly review
the basic approaches to solution of the sequential data assimilation problem.

3.3 Kalman Filter

Kalman Filter (KF) (Kalman, 1960) gives us the optimal solution for the system (3.2.3)–
(3.2.4) with linear dynamics (operatorsMt and Ht are linear) and zero mean Gaussian
white noise processes wt and vt. The state transition pdf p(xt|xt−1) and the likelihood
function p(yt|xt) then become of the Gaussian type:

p(xt|xt−1) = N (Mtxt−1,Qt), p(yt|xt) = N (Htxt,Rt).
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Here, N (µ,Σ) is a Gaussian pdf with mean value µ and covariance matrix Σ. Ma-
trices Mt ∈ RNx×Nx and Ht ∈ RNy×Nx are matrices of linear operators Mt and Ht,
respectively. Matrices Qt and Rt are known covariance matrices of model error and
measurement error, respectively, with appropriate dimensions:

Qt = E
[
vtv

T
t

]
, Rt = E

[
wtw

T
t

]
.

The analysis (posterior state estimate) is in the Kalman filter represented by mean
value x̄t|t and covariance matrix Pt|t of the estimated filtering Gaussian distribution:

x̄t|t = E [xt|y1:t] , Pt|t = E
[
(xt − x̄t|t)(xt − x̄t|t)

T|y1:t

]
. (3.3.1)

Similarly, the forecast (prior state estimate) is represented with mean value x̄t+1|t and
its covariance Pt+1|t of estimated predictive Gaussian distribution:

x̄t+1|t = E[xt+1|y1:t], Pt+1|t = E
[
(xt+1 − x̄t+1|t)(xt+1 − x̄t+1|t)

T|y1:t

]
. (3.3.2)

The data update step of the KF assimilation cycled is given by the following equa-
tions:

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t + Rt

)−1
, (3.3.3)

x̄t|t = x̄t|t−1 + Kt

(
y1:t −Htx̄t|t−1

)
, (3.3.4)

Pt|t = (I−KtHt)Pt|t−1(I−KtHt)
T + KtRtK

T
t (3.3.5)

= (I−KtHt)Pt|t−1, (3.3.6)

where I ∈ RNx×Nx is the identity matrix. We use the Kalman gain matrix Kt ∈ RNx×Ny

for linear weighing of contributions given by the current observations yt and the forecast
to the resulting analysis. The analysis x̄t|t together with the posterior error covariance
matrix Pt|t represent the sufficient statistics of the estimated posterior Gaussian pdf,

p(xt|y1:t) = N (x̄t|t,Pt|t).

The time update given by (3.3.7)–(3.3.8)

x̄t+1|t = Mx̄t|t, (3.3.7)
Pt+1|t = MtPt|tM

T
t + Qt+1, (3.3.8)

evaluates new prior pdf given by the forecast x̄t+1|t and its error covariance matrix
Pt+1|t,

p(xt+1|y1:t) = N (x̄t+1|t,Pt+1|t).
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The algorithm is initialized with prior estimates of the mean value x̄0|−1 and covariance
matrix P0|−1.

Generally, violation of assumptions on linearity of the model and normality of the
noise terms leads to a suboptimal solution. The computationally cheaper form of the
posterior error covariance matrix (3.3.6) should be used only for the optimal gain Kt,
otherwise it can cause a numerical instability.

3.3.1 Suboptimal Solution for Nonlinear Model

Suboptimal modification of the KF algorithm for nonlinear Mt and Ht is called the
Extended Kalman Filter (EKF) (Welch and Bishop, 1995). The EKF is based on
assumption that local linearization of (3.2.3)–(3.2.4) may be sufficient description of
nonlinearity. Given theMt and Ht are differentiable functions, we can linearize them
around the current estimates using the first terms in their Taylor series expansions:

Mt ≈
∂Mt

∂x

∣∣∣∣
x=x̄t|t

, Ht ≈
∂Ht

∂x

∣∣∣∣
x=x̄t+1|t

. (3.3.9)

Matrices Mt and Ht are used in the Kalman filter equations for advancing the posterior
covariance matrix and during the data update step, respectively. Since the Jacobians
(3.3.9) are dependent on the current state estimates, they must be recalculated at each
time step.

If the functionsMt and Ht are highly nonlinear, the results of the EKF are rather
poor. We can use expansions of higher orders or choose an alternative filtering method-
ology, e.g., the Unscented Kalman Filter (Julier and Uhlmann, 1997) or an ensemble
filter .

3.4 Ensemble Filters

Since the propagation and storing of large covariance matrices is computationally de-
manding, formally correct KF and its variants are not suitable for high-dimensional
problems commonly occurring in different geoscience applications, for instance, in me-
teorology (Houtekamer et al., 2005). The idea of ensemble filtering was introduced by
Evensen (1994). Ensemble filters avoid explicit evolution of covariance by approximat-
ing the estimated pdf with an ensemble of states. It can be understood as a Monte
Carlo approximation of the traditional KF.

3.4.1 Ensemble Kalman Filter

In Ensemble Kalman Filter (EnKF), a small random ensemble of states is used to
represent the estimated pdf. Similarly to the KF, the EnKF makes the assumption
that all probability density functions involved are Gaussian.

Let Xt|t−1 denote prior ensemble in time t,
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Xt|t−1 = [x1
t|t−1,x

2
t|t−1, . . . ,x

M
t|t−1].

The prior estimate x̄t|t−1 and prior covariance matrix Pt|t−1 are approximated as sample
mean and sample variance of Xt|t−1, respectively:

x̄t|t−1 ≡
1

M

M∑
i=1

xit|t−1, (3.4.1)

Pt|t−1 ≡
1

M − 1

M∑
i=1

(
xit|t−1 − x̄t|t−1

) (
xit|t−1 − x̄t|t−1

)T
. (3.4.2)

The posterior ensemble
Xt|t = [x1

t|t,x
2
t|t, . . . ,x

M
t|t ]

is given by the Bayesian data update, where each ensemble member is updated sepa-
rately:

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t + Rt

)−1
, (3.4.3)

xit|t = xit|t−1 + Kt

(
yi1:t −Htx

i
t|t−1

)
, i = 1, . . . ,M. (3.4.4)

A set of perturbed observation vectors yit ∼ N (yt,Rt), i = 1, . . . ,M , must be used
to update the ensemble members in order to fulfill (3.3.5). It can be shown that if all
the ensemble members were updated with the same observation vector yt and the same
gain Kt, the posterior covariance will be

Pt|t = (I−KtHt)Pt|t−1(I−KtHt)
T. (3.4.5)

Without the term KtRtK
T
t is the posterior covariance systematically underestimated.

Using posterior ensemble Xt|t, posterior estimate x̄t|t and covariance Pt|t are ap-
proximated with its sample mean and variance:

x̄t|t ≡
1

M

M∑
i=1

xit|t, (3.4.6)

Pt|t ≡
1

M − 1

M∑
i=1

(
xit|t − x̄t|t

) (
xit|t − x̄t|t

)T
. (3.4.7)

Advancing of the estimated Gaussian pdf approximated with the ensemble in time is
achieved by simply advancing each ensemble member with the nonlinear forecast model
Mt:

xit+1|t =Mt

(
xit|t
)
, i = 1, . . . ,M.
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Since the time evolution of the posterior covariance is performed by evolution of an
ensemble, the posterior covariance itself does not have to be stored.

What is more, since only Pt|t−1H
T and HPt|t−1H

T are required during filter eval-
uation, the full prior covariance matrix Pt|t−1 needs never to be calculated (Evensen,
1994). We can directly calculate the terms occurring in the expression for the Kalman
gain,

Pt|t−1H
T
t =

1

M − 1

M∑
i=1

(
xit|t−1 − x̄t|t−1

) (
Htx

i
t|t−1 −Htx̄t|t−1

)T
,

HtPt|t−1H
T
t =

1

M − 1

M∑
i=1

(
Htx

i
t|t−1 −Htx̄t|t−1

) (
Htx

i
t|t−1 −Htx̄t|t−1

)T
.

Covariance Pt|t−1 is also used in the formula for predictive density of the observations,

p(yt|y1:t−1) = N (Htx̄t|t−1,Zt), Zt = HtPt|t−1H
T
t + Rt, (3.4.8)

which corresponds to the standard predictive density of the Kalman filter (Peterka,
1981). This quantity is often called marginal likelihood (marginalization is with respect
to xt) and plays an important role in statistical model selection (Jeffreys, 1961).

Efficient Implementation of EnKF

Following (Mandel, 2006), let X̃t = [x̃1
t , . . . , x̃

M
t ] = [x1

t − x̄t, . . .x
M
t − x̄t] be an ensemble

of deviations from the ensemble mean. X̃t can be easily calculated using

X̃t = Xt −
1

M
(XtΨNx×1)ΨT

Nx×1,

where matrix ΨNx×1 is a matrix of all ones of dimension Nx × 1 and the expression
1
M

(XtΨNx×1)ΨT
Nx×1 stands for the ensemble, where all the members are equal to the

mean values x̄t of the original ensemble Xt. Covariance of Xt can be then evaluated
using

Pt =
1

M − 1
X̃tX̃

T
t . (3.4.9)

If we rewrite (3.4.9) as follows,

Pt =
1√

M − 1
X̃t

1√
M − 1

X̃T
t = StS

T
t ,

the matrix St can be thought of as a square root of Pt.
Bayesian update can be then formulated in a matrix form, where all the ensemble

members are updated simultaneously and the square root St|t−1 of Pt|t−1 is used,
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Algorithm 3.1 EnKF with perturbed observations.
1. Initialization. Generate a prior ensemble (background field):

X0|−1 =
[
x1

0|−1, . . . ,x
M
0|−1

]
, xi

0|−1 ∼ N (x̄0,P0), i = 1, . . . ,M.

2. EnKF data update:

(a) Generate perturbed measurements:

Dt =
[
y1

t , . . . ,y
M
t

]
, yi

t ∼ N (yt,Rt), i = 1, . . . , Ny.

(b) Calculate Kalman gain Kt for update of ensemble:

St|t−1 =
1√

M − 1

(
Xt|t−1 −

1
M

(Xt|t−1ΨNx×1)ΨT
Nx×1

)
,

Z−1
t = R−1

t

[
I−HSt|t−1

(
I + (HtSt|t−1)TR−1

t HtSt|t−1

)−1
(HtSt|t−1)TR−1

t

]
,

Kt = St(HtSt)TZ−1
t .

(c) Update the ensemble:

Xt|t = Xt|t−1 + Kt(Dt −HtXt|t−1).

3. EnKF time update. Predict new ensemble:

xi
t+1|t =M(xi

t|t), i = 1, . . . ,M.

4. Set t := t+ 1 and iterate from step 2.

Xt|t = Xt|t−1 + St|t−1(HtSt|t−1)T
(
HtSt|t−1(HtSt|t−1)T + Rt

)−1
(Dt −HtXt|t−1).

Here, Dt = [y1
t , . . . ,y

M
t ] is the ensemble of perturbed observation vectors.

For a large number of data points, the inversion of the term Zt = HtPt|t−1H
T
t +Rt in

(3.4.3) can be computationally demanding or even numerically unstable (Mandel, 2006).
Given that the observations error covariance matrix Rt is diagonal, i.e, the observations
are uncorrelated, we can use Sherman–Morrison–Woodbury formula (Hager, 1989) for
computation of Z−1

t :

(A+UCV)−1 = A−1 −A−1U
(
C−1 + VA−1U

)−1
VA−1. (3.4.10)

Substituting A = Rt, U = HtSt|t−1, C = I, V = HtSt|t−1 into (3.4.10) yields formula
for Z−1

t , where only the diagonal matrix Rt must be inverted:

Z−1
t =

[
R + HtSt|t−1(HtSt|t−1)T

]−1

= R−1
t

[
I−HtSt|t−1

(
I + (HtSt|−1)TR−1

t HtSt|t−1

)−1
(HtSt|t−1)TR−1

t

]
.
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3.4.2 Ensemble Square Root Filter

The Ensemble square root filter (EnSRF) is a revised version of the EnKF that elim-
inates the necessity to perturb the observations (Whitaker and Hamill, 2002) and the
posterior ensemble is formed deterministically. Deterministic methods were developed
to address the problems related to sampling errors associated with the use of perturbed
observations in stochastic analysis ensemble update methods (Tippett et al., 2003).
Whitaker and Hamill (2002) demonstrated that for an ensemble of a given size, the
EnSRF is more accurate than the EnKF.

In the EnSRF, the data update step (3.4.4) is expressed as N + 1 equations for
separate update of the ensemble mean x̄t|t−1 and the deviations x̃it|t−1:

x̄t|t = x̄t|t−1 + Kt

(
yt −Hx̄t|t−1

)
,

x̃it|t = x̃it|t−1 − K̃tHx̃it|t−1 =
(
I− K̃tH

)
x̃it|t−1, i = 1, . . . ,M.

Here, Kt is the traditional Kalman gain (3.4.3) and K̃t is the gain used to update the
deviations. In the EnKF, Kt = K̃t and deviations x̃t|t−1 are updated using

x̃it|t = x̃it|t−1 −Kt

(
ỹit −Hx̃it|t−1

)
, i = 1, . . . ,M, (3.4.11)

where ỹit ∼ N (0,Rt) are the deviations of perturbed measurements from the mean
yt(Burgers et al., 1998).

Whitaker and Hamill (2002) derived a formula for K̃t that will results in an ensem-
ble whose posterior error covariance satisfies (3.3.5). Substituting K̃t into (3.4.5) and
requiring the expression to be equal to the correct Pt|t, we obtain the following equation
for K̃t,

(I− K̃tH)Pt|t−1(I− K̃tH)T = (I− K̃tH)Pt|t−1(I− K̃tH)T + K̃tRtK̃
T
t , (3.4.12)

which has a solution

K̃t = Pt|t−1H
T

[(√
HPt|t−1HT + Rt

)−1
]T [√

HPt|t−1HT + Rt +
√

Rt

]−1

. (3.4.13)

The fact that the evaluation of (3.4.13) involves square roots of error covariance matrices
is the reason why the algorithm implementing the deterministic version of data update
is called the ensemble square root filter. The matrix square roots in (3.4.13) are not
unique and can be calculated by a commonly used factorization methods, e.g., Cholesky
or singular value decomposition.

Given that the state evolution operatorMt is linear, the posterior ensemble mean
x̄t|t and the posterior deviations from the mean x̃it|t can be evolved separately

x̄t+1|t = Mtx̄t|t,

X̃t+1|t = MtX̃t|t.

Otherwise, the full ensemble Xt must be formed before the time update.
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Sequential Processing of Observations

For an individual observation, i.e., when H ∈ R1×Nx and Rt ∈ R, the terms HPt|t−1H
T

and Rt reduce to scalars and (3.4.12) may be written as follows,

HPt|t−1H
T

HPt|t−1HT + Rt

K̃tK̃t −KtK̃t − K̃tKt + KtKt = 0. (3.4.14)

If the desired gain K̃t is assumed to be linearly proportional to the original gain K,

K̃t = αtKt, (3.4.15)

where α ∈ R is a constant, we obtain

HPt|t−1H
T

HPt|t−1HT + Rt

α2KtKt − 2αKtKt −KtKt = 0. (3.4.16)

This yields a quadratic equation for α

HPt|t−1H
T

HPt|t−1HT + Rt

α2 − 2αKtKt + 1 = 0. (3.4.17)

The equation has two roots. Since we want the deviations from the ensemble mean to
be reduced in magnitude, i.e., to decrease posterior variance of the ensemble, and to
maintain the same sign, the appropriate solution is

αt =

(
1 +

√
Rt

HPt|t−1HT + Rt

)−1

, (3.4.18)

which is always between 0 and 1 (Whitaker and Hamill, 2002).
In the case of non-correlated observations, when the observation error covariance

matrix Rt is diagonal, the observations yt can be processed sequentially, one at a time.
Updating the deviations from ensemble mean with K̃t given by (3.4.15) and (3.4.18)
ensures the posterior error covariance to be equal to (3.3.5). Algorithm of EnSRF with
sequential processing of observations is summarized in Algorithm 3.2.
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Algorithm 3.2 EnSRF with sequential processing of observations.
1. Initialization. Generate a prior ensemble (background field):

X0|−1 =
[
x1

0|−1, . . . ,x
M
0|−1

]
, xi

t ∼ N (x̄0,P0), i = 1, . . . ,M,

and set t := 0.

2. EnSRF data update. For j = 1, . . . , Ny:

(a) Calculate Kalman gain Kj;t for update of ensemble mean with jth observation

St|t−1 =
1√

M − 1

(
Xt −

1
M

(XtΨNx×1)ΨT
Nx×1

)
,

Kj;t =
St|t−1(HiSt|t−1)T

HiSt|t−1(HiSt|t−1)T + Rj;t
,

where Rj;t is variance of j-th observation and Hj ∈ R1×n is the corresponding observation
operator.

(b) Calculate Kalman gain K̃j;t for update of deviations from the mean with j-th observation:

K̃j;t = αj;tKj;t,

αj;t =

[
1 +

√
Rj;t(

HjSt|t−1

) (
HjSt|t−1

)T + Rj;t

]−1

.

(c) Update of ensemble mean x̄t|t−1 and departures from the mean X̃t|t−1

x̄t|t = x̄t|t−1 + Kt

(
yt −Hx̄t|t−1

)
x̃i

t|t = x̃i
t|t−1 − K̃tHx̃i

t|t−1, i = 1, . . . ,M.

3. EnSRF time update. Predict new ensemble according to:

xi
t+1|t =M(xi

t|t), i = 1, . . . ,M.

4. Set t := t+ 1 and iterate from step 2.

3.4.3 Sampling Error Issues in Ensemble Filtering

Ensemble Inflation

For a finite-sized ensemble, there is a sampling error in the estimation of forecast er-
ror covariance matrix (3.4.2). The theoretical exact forecast error covariance obtained
from an infinite-sized ensemble differs from any obtained from a finite-sized ensemble
of M ∈ N members (Whitaker and Hamill, 2002). Implication of this fact is, that
in ensemble-based assimilation systems, the forecast error is systematically underes-
timated. Information brought by new measurements is then penalized because the
measurement error seems to be relatively higher to the underestimated forecast error.
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Filter becomes too confident in the forecast and the divergence may occur. This ef-
fect can be observed particularly in small ensembles. Multiplicative ensemble inflation
is a method for artificial increase of the model forecast error variance (Anderson and
Anderson, 1999). The inflation is used to replace the forecast ensemble according to:

xi → ∆
(
xi − x̄i

)
+ x̄i, i = 1, . . . ,M (3.4.19)

with inflation factor ∆ slightly greater than 1. From (3.4.19) is obvious that the mean
value of the ensemble remains unchanged but its variance is increased.

Localization of Covariance

The sampling error introduced by the finite ensemble size also causes spurious co-
variances in the estimated forecast error covariance matrix. Techniques of covariance
localization filter out the small and noisy covariances and reduce the impact of the
observations on remote state variables. In spatial data assimilation, where the state
vector usually represent values of a quantity on a computational grid, the distance
between states and observation simply denotes the real geographical distance between
the grid points and the place of observation. Localization of a covariance matrix can
be performed by using the Schur product of a localization matrix with the covariance
matrix (Gaspari and Cohn, 1999). Schur product is an element-by-element matrix mul-
tiplication: the Schur product A ◦ B of matrices A ∈ Rm×n and B ∈ Rm×n is matrix
C ∈ Rm×n, where Cij = AijBij, i = 1, . . . , n, j = 1, . . . ,m.

More specifically, we modify the formula for the Kalman gain (3.4.3) to be

Kt = (ρ ◦Pt|t−1)HT
t

(
Ht(ρ ◦Pt|t−1)HT

t + Rt

)−1
, (3.4.20)

where ρ is a localization matrix (Houtekamer and Mitchell, 2001). Localization matri-
ces are constructed by the means of correlation functions. Maximum of such a function
reached at the observation location is 1 and the function typically decreases mono-
tonically to zero at some finite distance from the observation location. The rate of
correlation decrease with distance is given by the length-scale parameter l. Let ||Dij||
be the Euclidean distance between the observation location i and the grid points j.
Then the example of a localization function is the compactly supported, 5th order
piecewise rational function Ω(

√
10/3l, ||Dij||) suggested by Gaspari and Cohn (1999):

Ω(a, b) =


−1

4

(
b
a

)5
+ 1

2

(
b
a

)4
+ 5

8

(
b
a

)3 − 5
3

(
b
a

)2
+ 1, if 0 ≤ b ≤ a;

1
12

(
b
a

)5 − 1
2

(
b
a

)4
+ 5

8

(
b
a

)3
+ 5

3

(
b
a

)2 − 5
(
b
a

)
+ 4− 2

3

(
a
b

)
, if a < b ≤ 2a;

0, if b > 2a,
(3.4.21)

where a and b correspond to
√

10/3l and ||Dij||, respectively. Function given by (3.4.21)
is similar to the Gaussian distribution in shape but is has a compact support. It is a
homogeneous and isotropic correlation function, it means that it has the same behavior
in all direction and the rate of correlation decrease is also invariant to translation of
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Figure 3.4.1: Correlation function given by (3.4.21) with different values of the length-
scale parameter l.

observation location in space. Correlation function given by (3.4.21) with different
values of l is visualized in Figure 3.4.1.

Illustration of localization effect on spatial data is illustrated in Figure 3.4.2. In
Figure 3.4.2 (a), a contour plot of spatial covariance of a point denoted with the red
circle with the rest of the polar computational grid is visualized. In Figures 3.4.2
(b)–(d), we see the resulting covariance after application of the localization using a
localization matrices given by (3.4.21) with different values of the length-scale parameter
l.

3.5 Particle Filter

Particle filtering (PF) refers to a group of methods further generalizing the Bayesian
update problem for non-Gaussian pdfs. It includes a range of Monte Carlo techniques
for generating an empirical approximation of posterior p(x1:t|y1:t) of a state trajectory
x1:t = (x1, . . . ,xt),

p(x1:t|y1:t) ≈
1

N

N∑
i=1

δ
(
x1:t − x

(i)
1:t

)
. (3.5.1)

Here, x
(i)
1:t, i = 1, . . . , N , are i.i.d..samples from the posterior p(x1:t|y1:t) and δ(·) is the

Dirac δ-function. It comes out from the method of Monte Carlo integration. Expected
value of an arbitrary function f(·) of x1:t integrable with respect to p(x1:t|y1:t) can be

42



Figure 3.4.2: Illustration of the effect of covariance localization; (a) contour plot of
spatial covariance (without localization) of a point denoted with the red circle with the
rest of the polar computational grid; (b)–(d) resulting covariance after application of
the localization using localization matrices given by (3.4.21) with increasing value of
the length-scale parameter l.

then approximated as

E[f(x1:t)|y1:t] =

ˆ
f(x1:t)p(x1:t|y1:t)dx1:t ≈

1

N

N∑
i=1

f
(
x

(i)
1:t

)
, (3.5.2)

and the rate of convergence of this approximation is independent of the dimension of
the integrand (Doucet et al., 2001).

In most of real applications we are not able to sample directly from the exact
posterior, however, we can draw samples from a chosen proposal density (importance
function) q(x1:t|y1:t):

p(x1:t|y1:t) =
p(x1:t|y1:t)

q(x1:t|y1:t)
q(x1:t|y1:t)

≈ p(x1:t|y1:t)

q(x1:t|y1:t)

1

N

N∑
i=1

δ
(
x1:t − x

(i)
1:t

)
. (3.5.3)
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Approximation (3.5.3) can be written in a form of the weighted empirical distribution,

p(x1:t|y1:t) ≈
N∑
i=1

w
(i)
t δ
(
x1:t − x

(i)
1:t

)
, (3.5.4)

w
(i)
t ∝ p(x

(i)
1:t|y1:t)

q(x
(i)
1:t|y1:t)

. (3.5.5)

Under this importance sampling procedure (Rubinstein and Kroese, 2008), the true pos-
terior distribution needs to be evaluated point-wise only, since (3.5.4) can be normalized
trivially via a constant c =

∑n
i=1 w

(i)
t .

In the following text, we will show how to recursively update a pdf given as a
weighted empirical distribution. Following Ristic et al. (2004), suppose we have a set
of samples approximating posterior p(x1:t−1|y1:t−1) at time t− 1 and a new vector of
measurements yt. We wish to approximate p(x1:t|y1:t) with a new set of samples. If
the proposal density is chosen to factorize such that

q(x1:t|y1:t) = q(xt|x1:t−1,y1:t)q(x1:t−1|y1:t−1), (3.5.6)

then the new samples x
(i)
1:t ∼ q(x1:t|y1:t) can be obtained by augmenting each of the

existing samples x
(i)
1:t−1 ∼ q(x1:t−1|y1:t−1) with the new state x

(i)
t ∼ q(xt|x1:t−1,y1:t).

Using the chain rule and the Bayes formula, p(x1:t|y1:t) can be written in terms of
p(x1:t−1|y1:t−1), p(xt|xt−1) and p(yt|xt), as follows:

p(x1:t|y1:t) =
p(yt|x1:t,y1:t−1)p(x1:t|y1:t−1)

p(yt|y1:t−1)

=
p(yt|x1:t,y1:t−1)p(xt|x1:t−1,y1:t−1)p(x1:t−1|y1:t−1)

p(yt|y1:t−1)

=
p(yt|xt)p(xt|xt−1)p(x1:t−1|y1:t−1)

p(yt|y1:t−1)
(3.5.7)

∝ p(yt|xt)p(xt|xt−1)p(x1:t−1|y1:t−1) (3.5.8)

By substituting (3.5.6) and (3.5.7) into (3.5.5), (3.5.5) may be written in the following
recursive form:

w
(i)
t ∝

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)p(x

(i)
1:t−1|y1:t−1)

q(x
(i)
t |x

(i)
1:t−1,y1:t)q(x

(i)
1:t−1|y1:t−1)

∝ w
(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1,y1:t)

. (3.5.9)

Furthermore, if the proposal density is chosen as follows,

q (xt|x1:t−1,y1:t) = q (xt|xt−1,yt) (3.5.10)
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then the proposal density becomes only dependent on the xt−1 and yt. This is par-
ticularly useful in the common case when only an estimate of the marginal posterior
p(xt|y1:t) is required at each time step. It means, that only samples x

(i)
t need to be

stored (Ristic et al., 2004) and the marginal posterior density p(xt|y1:t) can be approx-
imated as

p(xt|y1:t) ≈
N∑
i=1

w
(i)
t δ
(
xt − x

(i)
t

)
, (3.5.11)

w
(i)
t ∝ w

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1,yt)

. (3.5.12)

Using the particles, the mean value x̄1:t and the covariance Σ1:t of the posterior
approximation (3.5.4) can be calculated as follows,

x̄1:t =
N∑
i=1

w
(i)
t x

(i)
1:t, (3.5.13)

Σ1:t =
N∑
i=1

w
(i)
t

[(
x

(i)
1:t − x̄1:t

)(
x

(i)
1:t − x̄1:t

)T
]
. (3.5.14)

The scheme for sequential evaluation of the weight with incoming observations is
referred to as sampling-importance-sampling (SIS) (Andrieu et al., 2003). Besides the
appropriate choice of the proposal density, successful application of the PF requires more
steps, namely implementation of a re-sampling algorithm, which avoids degeneracy of
the weights.

3.5.1 Degeneracy Problem and Re-sampling

The variance of weights (3.5.9) increases during their recursive evaluation. The increase
has a harmful effect on the accuracy and leads to the weights degeneracy, which is
a common problems with the SIS particle filter (Ristic et al., 2004). The weights
degeneracy means, that after certain number of recursive steps, all but one particle
have negligible normalized weight which implies sample impoverishment and loss of
diversity of the particles. In the SIS framework, weight degeneracy is unavoidable and
has negative effects. Computational time must be spent on propagation of particles
with negligible weights whose contribution to the approximation of p(xt|y1:t) is small.

A suitable measure of degeneracy of an algorithm is the effective sample size Neff

(Ristic et al., 2004), which can be estimated using normalized weights w(i)
t as follows:

Neff =
1∑N

i=1 (w
(i)
t )2

, (3.5.15)
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Figure 3.5.1: Illustration of basic principle of re-sampling in PF. The piecewise-constant
blue line denotes the cumulative weight

∑
iw

(i) of N = 10 particles. The higher the
weight w(i), the longer the interval I (3.5.17) and the higher the probability that random
samples ui ∼ U [0, 1), denoted with dashed lines, are from I. Particle 1 was copied twice,
particle 2 once, particle 5 for three times, particle 6 once, particle 8 twice and particle
10 once.

When all the weight are approximately of the same value—ideally w
(i)
t = 1/N , i =

1, . . . , N—then Neff = N . If there is a particle j such that w(j)
t = 1, and w(i)

t = 0 for
all i 6= j, then Neff = 1. Small values of Neff indicate a severe degeneracy of particle
weights and the particles should be re-sampled.

Re-sampling is a method for elimination of the particles with low importance weights
and copying of those samples with high importance weights. Reproduction of the
best particles brings more focus on the promising parts of the state-space. During re-
sampling, a random measure {x(i)

t , w
(i)
t }Ni=1 is replaced with {x(i)∗

t , 1/N}Ni=1 with uniform
weights (Ristic et al., 2004). Re-sampling is not deterministic. The new set of particles
and weights is generated in a way that the probability of sampling a particle x

(j)
t from

discrete approximation of p(xt|y1:t) is given by its normalized importance weight w(j)
t :

Pr
(
x

(i)∗
t = x

(j)
t

)
= w

(j)
t , i = 1, . . . , N. (3.5.16)

The resulting sample is an i.i.d. sample from the discrete approximation of density
p(xt|y1:t), where the weights of all the particles are uniform.

Illustration of the basic idea behind the re-sampling is in Figure 3.5.1. The piecewise-
constant blue line denotes the cumulative weight

∑
iw

(i) of N = 10 particles. Particles
with high weights have a high probability being re-sampled. The higher the weight w(i)

t ,
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Algorithm 3.3 Systematic re-sampling.
1. Generate N increasingly ordered numbers

uj =
(j − 1) + ũ

N
, j = 1, . . . , N,

where ũ is sampled from uniform distribution U(0, 1).

2. Produce new set of particles. Particle x(i)
t is copied ni-times, where

ni is the number of uk ∈

[
i−i∑
s=1

w
(s)
t ,

i∑
s=1

w
(s)
t

)
.

the longer the interval

I =

[
i−1∑
s=1

w
(s)
t ,

i∑
s=1

w
(s)
t

)
, i = 1, . . . , N, (3.5.17)

and the higher the probability that random samples ui ∼ U [0, 1), denoted with dashed
lines, will be from I. In the figure, particle 1 was copied twice, particle 2 once, particle 5
for three times, particle 6 once, particle 8 twice and particle 10 once. These 10 samples
with uniform weights represent the re-sampled empirical density.

Example of a re-sampling algorithm is the systematic re-sampling given in Algo-
rithm 3.3, where we have to sample only one number from U [0, 1). Modification of the
SIS algorithm with re-sampling is called sampling-importance-resampling (SIR), see Al-
gorithm 3.4. More on re-sampling algorithms can be found, e.g., in (Douc and Cappé,
2005).

3.5.2 Choice of Proposal Density

The choice of proposal density q(x1:t|y1:t) plays a crucial role in particle filtering. There
is no easy prescription for choosing a good proposal density, nevertheless, we can sum-
marize its typically desirable properties (Oh and Berger, 1992):

• It should have convenient Monte Carlo properties, i.e., it should be easy to draw
random samples from it.

• The tails of q(·) should not be sharper than the tails of p(·). Otherwise, approxi-
mation of p(·) may have a large variance or even fail to converge.

• Proposal density q(·) should mimic p(·) well.

The most straightforward choice of the proposal density in the recursive scheme (3.5.9)
is the state transition pdf

q(x
(i)
t |x

(i)
t−1,yt) = p(xt|xt−1). (3.5.18)
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Algorithm 3.4 Sampling–importance–re-sampling algorithm (particle filter).

1. Initialization. For i = 1, . . . , N initialize particles x(i)
0|−1 ∼ p(x0) and set t := 0.

2. PF data update: Evaluate the importance weights

w̃
(i)
t = w

(i)
t−1p

(
yt|x(i)

t|t−1

)
, i = 1, . . . , N,

and normalize w(i)
t = w̃

(i)
t /

∑N
j=1 w̃

(j)
t .

3. Re-sampling: Evaluate estimate of effective sample size Neff . If Neff < NThr, where NThr is a
given threshold, sample N particles, with replacement, according to

Pr
(
x(i)

t|t = x(j)
t|t−1

)
= w

(j)
t , i = 1, . . . , N,

and set uniform weights w(i)
t = 1

N , i = 1, . . . , N.

4. PF time update: Predict new particles according to

x(i)
t+1|t ∼ p

(
xt+1|t|x

(i)
t|t

)
, i = 1, . . . , N.

5. Set t := t+ 1 and iterate from step 2.

Under the choice (3.5.18), the recursion of weights (3.5.11) is given by

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t ). (3.5.19)

However, this popular choice is rather sub-optimal.
More advanced approaches are based on adaptive selection of the proposal, where

we assume a parameterized form of the proposal in time t and estimate its parameters
using weights w(i)

t (Andrieu et al., 2003, 2010). The approach can be extended for
estimation of the proposal of the whole state trajectory up to time t. From the re-
estimated proposal q (x1:t|y1:t) we can generate new population of trajectories x

(i)
1:t and

recompute the weights from the beginning up to time t. For instance, given that the
proposal density is assumed to be a multidimensional Gaussian pdf, we use the weights
for estimation of its mean and covariance matrix. This example is a simple choice and
more elaborated proposal densities can be constructed, e.g., a parametrized proposal
in the form of a Gaussian mixture estimated using the EM algorithm (Dempster et al.,
1977).

The PF algorithm with an adaptive selection of the proposal density is summarized
in Algorithm 3.5. In Step 2, weights w(i)

t are computed using up-to-now observation
y1:t. The weights are used for re-estimation of the proposal density q(x1:t|y1:t) in Step
3. Up-to-now trajectories of particles are discarded and new trajectories are sampled
from the corrected proposal in Step 4. The new trajectories are augmented with the
forecasts of the state values for the next time step evaluated using the state transition
density. In Step 5, we increment the time index and proceed to Step 2, where the
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Algorithm 3.5 Particle filter with adaptive selection of proposal density.

1. Initialization. For i = 1, . . . , N initialize particles x(i)
0 ∼ p(x0) and set t := 0.

2. Evaluation of normalized weights w(i)
t

w
(i)
t ∝

p
(
x(i)

1:t|y1:t

)
q
(
x(i)

1:t|y1:t

) .
3. Adaptive selection of proposal density q(x1:t|y1:t) for the next time step using weights w(i)

t and
particle trajectories x(i)

1:t.

4. Sample new trajectories from for the next time step:

(a) x(i)
1:t+1 ∼ q(x1:t+1|y1:t), where q(x1:t+1|y1:t) = q(x1:t|y1:t)p(xt+1|xt).

(b) Reset particle weights w(i)
t = 1/N , i = 1, . . . , N .

5. Set t := t+ 1 and iterate from step 2.

weights are recomputed using the new state trajectories.

3.5.3 Practical Evaluation of Weights

Evaluation of Weighs in Logarithmic Scale

In practice, it is beneficial to evaluate non-normalized weights w̃(i)
t in a logarithmic

scale. In the following text, let

ln w̃
(i)
t = ln(w̃

(i)
t ), i = 1, . . . , N.

Before normalization, we subtract the value of the maximum weight w̃max
t from all the

weights, as follows,

ln w̃
(i)∗
t = ln w̃

(i)
t − lnw̃max

t = ln

(
w̃

(i)
t

w̃max
t

)
,

where ln w̃max
t = maxi∈N ln w̃

(i)
t .

This procedure ensures, that the weights are better scaled and the overall algorithm
is numerically more stable. After exponentiation, the maximum weight is equal to 1 and
there is always at least one particle which has a reasonable weight after normalization.
The procedure does not affect the resulting normalized weights:

w
(i)∗
t =

w̃
(i)∗
t∑N

j=1 w̃
(j)∗
t

=

w̃
(i)
t

w̃max
t∑N

j=1
w̃

(i)
t

w̃max
t

=

w̃
(i)
t

w̃max
t

1
wmax

t

∑N
j=1 w̃

(j)
t

=
w̃

(i)
t∑N

j=1 w̃
(j)
t

= w
(i)
t .
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Effective Evaluation of Gaussian Likelihood

Let the likelihood function given by the observation model (3.2.4) be of a multidimen-
sional Gaussian type, p(yt|xt) = N (Ht(xt),Zt), more specifically

p(yt|xt) = (2π)−
Ny
2 (det Zt)

− 1
2 exp

[
−1

2

(
(yt −Ht(xt))

TZ−1
t (yt −Ht(xt))

)]
.

A logarithmic weight is then

ln w̃t = −0.5
(
ln det Zt + vT

t Z−1vt
)
.

Let Ft be the lower triangular Cholesky factor of Zt. It can be shown (Golub and
Van Loan, 1996), that it holds

ln w̃t = ln

Ny∏
i=1

(Ft[i, i])
2 + ||F−1

t vt||2, (3.5.20)

where Ft[i, i], i = 1, . . . , Ny, are diagonal elements of Ft and || · || denotes the Euclidean
2-norm.

3.6 Marginalized Particle Filter

The main advantage of importance sampling is its generality. Particle filters are ca-
pable of approximating an arbitrary density via empirical density at the price of high
computational cost, which is prohibitive in high-dimensional problems. This obstacle
can be overcome in the cases, where the structure of the model (3.2.3)–(3.2.4) allows
analytical marginalization over a subset, xct , of the full state vector

xt =

[
xct
xpt

]
. (3.6.1)

Using the chain rule and the factorization (3.6.1), the posterior p(x1:t|y1:t) has the
form

p (x1:t|y1:t) = p (xc1:t|x
p
1:t,y1:t)︸ ︷︷ ︸

analytical filter

p (xp1:t|y1:t)︸ ︷︷ ︸
PF

, (3.6.2)

where p (xct |x
p
1:t,y1:t) is analytically tractable, while p (xp1:t|y1:t) is not (Doucet et al.,

2001; Schön et al., 2005), and we use particle filter for its approximation. This tech-
nique is referred as Rao-Blackwellization (Doucet et al., 2001). We replace the term
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p (xp1:t|y1:t) in (3.6.2) by a weighted empirical distribution, in analogy to (3.5.3), yielding

p (x1:t|y1:t) ≈
n∑
i=1

w
(i)
t p
(
xc1:t|x

p,(i)
1:t ,y1:t

)
δ
(
xp1:t − x

p,(i)
1:t

)
, (3.6.3)

w
(i)
t ∝

p
(
x
p,(i)
1:t |y1:t

)
q
(
x
p,(i)
1:t |y1:t

) . (3.6.4)

Note that now we only have to sample from the space of xpt . Recursive evaluation is
achieved by application of the Bayes rule

p (x1:t|y1:t) ∝ p(yt|xt)p(xt|xt−1)p (x1:t−1|y1:t−1) , (3.6.5)

and substitution of (3.6.3) in place of p(x1:t|y1:t) and p(x1:t−1|y1:t−1). Comparing ele-
ments in the summations on both sides of equation (3.6.5), we obtain:

w
(i)
t ∝

p
(
yt,x

p,(i)
t |xp,(i)1:t−1,y1:t−1

)
q
(
x
p,(i)
t |xp,(i)1:t−1,y1:t

) w
(i)
t−1, (3.6.6)

p(yt,x
p,(i)
t |xp,(i)1:t−1,y1:t−1) =

ˆ
p(yt|xt)p(xt|xt−1)p(xct−1|x

p,(i)
1:t−1,y1:t−1)dxctdx

c
t−1. (3.6.7)

The requirement of analytical tractability of integrations in (3.6.7) is always fulfilled
when (3.2.1) contains a linear-Gaussian part, (Schön et al., 2005), giving rise to the
marginalized particle filter (MPF) with the Kalman filter. Resulting approximation of
the posterior pdf (3.6.3) then becomes a weighted sum of Gaussian pdfs

p (x1:t|y1:t) ≈
n∑
i=1

w
(i)
t N

(
xct ; x̄

c,(i)
t ,P

(i)
t

)
δ
(
xp1:t − x

p,(i)
1:t

)
,

where x̄
c,(i)
t and P

(i)
t are mean values and covariance matrices of Gaussian distributions

N (xct ; x̄
c,(i)
t ,P

(i)
t ) attached to particles x

p,(i)
t .

Using the results from Appendix A, the minimum mean square error estimates of the
expected value x̂ct and covariance Pt of the resulting posterior mixture p(xct |x

p
1:t,y1:t)

are given, as follows:

x̂ct =
N∑
i=1

w
(i)
t x̄

c,(i)
t , (3.6.8)

Pt =
N∑
i=1

w
(i)
t

[
P

(i)
t +

(
x̄
c,(i)
t − x̂ct

)(
x̄
c,(i)
t − x̂ct

)T
]
. (3.6.9)

Illustration of a 2-dimensional state x = [x1, x2]T estimated using MPF is in Fig-
ure (3.6.1). Resulting joint estimate of the posterior pdf is in the linear-Gaussian part
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of the state, x1, estimated using the optimal Kalman filter and approximated using a
particle filter in the non-linear and/or non-Gaussian part of the full state vector, x2.

Tractable solution also exists for discrete-variable models (Thrun et al., 2005) and
models based on conjugate statistics (Saha et al., 2010). However, the range of models
amenable to this approach is still rather small and does not contain any models suitable
for large-scale and non-linear problems.

Figure 3.6.1: Illustration of a 2-dimensional state x = [x1, x2]T estimated using MPF.
Resulting joint estimate of the posterior pdf is in the linear-Gaussian part of the state,
x1, estimated using the optimal Kalman filter and approximated using a particle filter
in the non-linear and/or non-Gaussian part of the full state vector, x2.
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Chapter 4

MPF Framework for Tuning of
Ensemble Filters

4.1 Modification of MPF Algorithm for Suboptimal
Conditional Filters

Since the optimal Kalman filter is not suitable for large scale and non-linear problems,
it would advantageous to substitute it with an approximate filter within MPF. We
propose to relax the requirement of exact marginalization in (3.6.6) and replace it
by an approximation. We note that given numerical values of x

p,(i)
t ,x

p,(i)
t−1 , equation

(3.6.7) is equivalent to the normalizing constant of a Bayesian filter (3.2.5). Hence, any
Bayesian filter that is capable of evaluating its normalizing constant can be used to
approximate (3.6.7). What results is an algorithm equivalent to marginalized particle
filtering where the analytical Kalman filters are replaced by approximate conditional
filters. Specifically, the following filters interact via Algorithm 4.1:

1. Conditional filter on variable xct , treating xpt as an observation, i.e.,

p(xct |x
p
1:t,y1:t) =

p(yt,x
p
t |xct ,x

p
1:t)p(x

c
t |x

p
1:t−1,y1,t−1)

p(yt,x
p
t |x

p
1:t−1,y1,t−1)

. (4.1.1)

2. Particle filter on variable xp, that handles sampling from the proposal density
q(xpt |x

p
t−1,y1:t) and re-sampling. Each particle is attached to one conditional

filter.

In this general form, the algorithm is rather unspecific. This is due to the fact that
arbitrary conditional filters can be combined with arbitrary particle filtering approaches.
Therefore, we consider Algorithm 4.1 to represent a framework for designing specific
filtering variants. The word framework is used to distinguish this approach from the
analytical MPF.
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Algorithm 4.1 General MPF framework.

1. Generate initial particles xp,(i)
0 , i = 1, . . . , N , and set initial statistics of all associated conditional

filters.

2. For each new data record yt do:

(a) Sample new value of particles xp,(i)
t , i = 1, . . . , N , and update statistics of all associated

conditional filters via (4.1.1).

(b) Compute weights (3.6.6) of all particles and their associated conditional filters.

(c) If the number of efficient particles, Neff , is lower than the chosen threshold, re-sample the
particles.

The key property of the MPF is partitioning of the state variable into two parts. In
the original exact formulation, the choice of partitioning is fully determined by tractabil-
ity of the Bayes rule (3.2.5). Finding a partitioning in the context of environmental
modeling where the state variables typically obey the same equations is harder. How-
ever, the relaxed formalization of Section 3.6 allows to interpret xpt not as a partition
of the full state but rather as an augmentation of the original state xct by nuisance
parameters. What results is a framework for on-line tuning of existing filters.

The general algorithm of tuning is described in Algorithm 4.1, specific variants arise
for the following choices:

1. Choose a preferred variant of the conditional filter (e.g. a variant of ensemble
filter) estimating xct ,

2. Choose tuning parameters of interest, xpt , use them to augment the original state
xct via the chosen model of their evolution, p(xpt |·),

3. Choose a proposal density q(xpt |·), e.g., the evolution model, q(xpt |·) ≡ p(xpt |·).

Different choices in each of the points above will lead to different properties of the
resulting filter. The number of possible combinations of these choices is enormous, and
finding guidelines for the best option in a given application context is a task for further
research. In some applications, a physically motivated evolution model of xpt may be
found, while heuristic or expert-chosen models may be more appropriate in others.

4.2 Estimation of Inflation Factor, Observation Error
Variance, and Length-scale Parameter

We focus on ensemble filters, which are suitable for large-scale problems arising in spa-
tial data analysis. Generally, ensemble methods tend to underestimate model error,
which can significantly decrease filtering performance or even result in divergence. The
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techniques for compensating small ensemble issues described in Section 3.4.3 have tun-
ing parameters that typically need to be set-up experimentally. Substantial effort has
been put into on-line estimation of the inflation factor alone, (Anderson, 2007a), or in
tandem with the observation error (Li et al., 2009). In this Section, we approach the
same problem using the MPF framework with the following specific choices.

1. We have chosen the EnSRF with multiplicative inflation (3.4.19) as our condi-
tional filter.

2. The unknown tuning parameters regarding model error are: the time-variant in-
flation factor ∆t and the time-varying length-scale parameter lt of the covariance
localization function. We can include also different types of parameters like magni-
tude of observation error, rt, for all observations, i.e., Rt = rtI. The augmentation
of the state vector is then xpt = [∆t, rt, lt]

T.

3. The proposal density is chosen as p(xpt |x
p
t−1).

Augmentation xpt is evolved using

p(xpt |x
p
t−1) = p(∆t|∆t−1)p(rt|rt−1)p(lt|lt−1),

where, evolution of the parameters is modeled by truncated Gaussian random walks,

p(∆t|∆t−1) = tN (∆t−1, σ
2
∆, [1,∞]),

p(rt|rt−1) = tN (rt−1, σ
2
r , [0,∞]), (4.2.1)

p(lt|lt−1) = tN (lt−1, σ
2
l , [0,∞]).

Scalar parameters σ∆, σr, and σl denote the spread of the random walks, respectively.
Non-negativity of all considered parameters motivates truncation of support of the
random walks.

Under the choice of proposal density (3.6.6) reduces to

w
(i)
t = w

(i)
t−1p(yt|y1:t−1,x

p,(i)
t ), (4.2.2)

where p(yt|y1:t−1,x
p,(i)
t ) defined by (3.4.8) is now explicitly conditioned on the unknown

parameters:

p(yt|y1:t−1,x
p,(i)
t ) ∝ det

(
Zt(x

p,(i)
t )

)− 1
2 ×

× exp

[
−1

2

(
yt −Hx̄

c,(i)
t|t−1

)T

Z−1
t (x

p,(i)
t )

(
yt −Hx̄

c,(i)
t|t−1

)]
. (4.2.3)

Resulting algorithm defines an adaptation scheme related to other approaches used
in the literature. Specifically, (4.2.3) is the same equation that was used for maximum
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likelihood estimation of covariance parameters (Dee, 1995). Maximization of this func-
tion is achieved, e.g., via simplex methods (Mitchell and Houtekamer, 2000). In our
approach, (4.2.3) serves as a likelihood function for Bayesian estimation of the tuning
parameters, xp,t. The variance of the random walk then models our belief in time-
variability of the tuning parameters. In the special case of stationary parameters, (i.e.,
σ∆ = σr = σl = 0), Algorithm 4.1 is reduced to a parallel run of N ensemble filters,
each of which is accumulating the product of p(yt|y1:t−1,x

p,(i)
t ) in each step. After

several hundreds of steps, majority of the weights will converge to zeros and one of
them will converge to one. Such behavior is known as sample impoverishment in the
particle filtering literature. The convergence of probability mass to a single point may
be useful for finding the best tuned values in off-line phase. However, this degeneracy
is undesirable for on-line application, and non-zero variances of random walks (4.2.1)
have to be used.

For non-stationary parameters, each of the N filters follows a random walk of the
tuning parameters. The re-sampling operation removes filters that diverged into un-
likely regions, and replaces them by copies of the filters with parameters that are more
likely. The area of higher likelihood is then explored by more filters in detail. This of
course requires to run N ensemble filters in parallel which is computationally expensive.
However, the key advantage of this approach is that it is able to optimize non-convex
and multi-modal likelihood functions.

4.3 Simulation Studies

4.3.1 Lorenz-96 Model

To demonstrate versatility of the method, we test the MPF approach in the Lorenz-96
model by Lorenz and Emanuel (1998) which has been widely used in simulation studies.
The model is given by

dxj
dt

= xj−1(xj+1 − xj−2)− xj + F, (4.3.1)

where F is the model forcing and xj are variables forming a cyclic chain. We define
x−1 = xJ−1, x0 = xJ and xJ+1 = x1 to make (4.3.1) meaningful for all values of
j = 1 . . . J . We use 40 variables, and F = 8 for the strength of forcing. The model
(4.3.1) can be integrated forward with the fourth-order Runge–Kutta scheme. The
system is computationally stable for step of 0.05 non-dimensional units, which is also
the step of the analysis. All the experiments are performed as twin experiments.

4.3.2 Stationary Parameters

To create a baseline for comparison of adaptive tuning strategies, we performed parallel
run of EnSRFs for fixed values of ∆, l selected on a rectangular grid, as in (Whitaker
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RMSE marginalized log-likelihood
rank inflation localization mean value inflation localization sum
#1 1.04 7.0 0.2074 1.05 7.0 -2079401
#2 1.04 6.0 0.2075 1.05 8.0 -2079483
#3 1.05 8.0 0.2076 1.04 6.0 -2079513

Table 4.1: Best stationary choices of nuisance parameters for EnSRF according to two
criteria.

and Hamill, 2002). From Bayesian point of view, this setup corresponds to estimation
of stationary parameters:

p(∆, l|y1:t) ∝ p(∆, l)
t∏

j=1

p(yj|y1:j−1,∆, l) (4.3.2)

where p(∆, l) is a prior probability density on discrete values of ∆, l at the grid points,
which is uniform, and p(yj|y1:j−1,∆, l) is given by (4.2.3). For numerical stability,
(4.3.2) is often computed in logarithmic scale where the product is replaced by the sum
of marginal log-likelihoods.

The observation data are generated from the perfect model scenario where the “true”
state was generated by integrating the Lorenz-96 model (4.3.1) for 100000 steps and
observations are generated from the true state by addition of zero-mean Gaussian noise
with variance r = 1. The analysis was performed by the EnSRF with covariance local-
ization constructed using a compactly supported fifth-order piecewise rational function
given by (3.4.21) with length-scale parameter l. The results of a simulation experi-
ment with 132 EnSRFs with 15 ensemble members, r = 1, ∆ = [1.0, 1.1, . . . , 1.10], and
l = [0, 1, . . . , 11] are displayed in Figure 4.3.1 in two modalities. First, the traditional
RMSE is computed for each couple of parameters,

RMSE =
1

99000

100000∑
t=1000

√
1

40
(xt − x̂ct)

T(xt − x̂ct), (4.3.3)

for the MPF algorithm. Second, the sum of marginal log-likelihoods (4.3.2) within the
same time intervals is displayed for illustration.

Note that the contours of the marginal log-likelihood (4.3.2) correspond closely to
the contours of the RMSE. This suggests that the marginal likelihood p(yτ |y1:τ−1,∆, l)
is a good measure to optimize for the best RMSE in the cases where the true state
values are not known. The three best choices within each modality are given in Table
4.1. Note that two choices—∆ = 1.05, l = 8 and ∆ = 1.04, l = 6—are in the top
three for both criteria. The relative differences are rather small, however, in terms of
normalized posterior probability (4.3.2) the best parameters in Table 4.1 are e82 times
more likely that the second best.
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Figure 4.3.1: Estimation of stationary parameters on rectangular grid. Top: marginal
log-likelihood (4.3.2) of the tuned parameters ∆, l. Labels of the contour lines denote
difference from the maximum which is marked by a circle. Bottom: Time average of
RMSE (4.3.3).

4.3.3 Adaptive Estimation in Perfect Model Scenario

The same observation data used for estimation of stationary parameters were used to
estimate the time-varying parameters in two different scenarios:

Scenario (i): fixed rt = 1.0, estimated ∆t, lt, i.e., xpt = [∆t, lt]
T,

Scenario (ii): estimated rt, lt,∆t, i.e., xpt = [∆t, rt, lt]
T.
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Figure 4.3.2: Position of the particles ∆
(i)
t , l

(i)
t denoted by ’+’ on the background of

stationary contours of marginal log-likelihood.

The particle filter is using multinomial re-sampling (Gordon et al., 2002) and Neff =
0.8N . The variances of random walks (4.2.1) for the MPF algorithm were chosen as

σ∆ = 0.01∆
(i)
t−1 + 0.0001,

σl = 0.01l
(i)
t−1 + 0.0001, (4.3.4)

σr = 0.005r
(i)
t−1 + 0.0001,

The prior density of the tuning parameters is chosen as uniform on support p(σy,0) =
U(0.1, 4), p(∆0) = U(1.0, 1.10), p(l0) = U(0.11, 11.11).

Results of simulations for different number of particles and both scenarios are dis-
played in Tables 4.2 and 4.3, respectively. Using particles and their weights, estimates
of the parameters are evaluated using

x̄pt =
n∑
i=1

w
(i)
t x

p,(i)
t .

In accordance with (Whitaker and Hamill, 2002; Li et al., 2009), we ignore the first
1000 steps and report the results only for the subsequent steps. Spatial distribution of
the particles for ∆t, lt in scenario (i) at time steps t = 1, 50000, 100000 is displayed in
Figure 4.3.2 on the background of contours for the stationary marginal log-likelihood
from Fig 4.3.1. We note that alignment of the particles in the middle of the stationary
contour at t = 50000 is a coincidence, in majority of all other time steps the cloud is a
bit off the stationary optimum.

As expected, the RMSE is steadily decreasing with increasing number of particles
for both considered scenarios. Note that for N = 10 and higher, the MPF filter achieves
better performance than the best-tuned filter. In the more complex scenario of tuning
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Results for scenario (i)

N
mean
RMSE

std
RMSE

mean
∆̄t

std ∆̄t
mean
l̄t

std l̄t
mean
r̄t

std r̄t

5 0.2089 0.0521 1.0334 0.0080 5.6942 0.9072 1.0 0.0
10 0.2071 0.0510 1.0337 0.0064 6.3431 0.9229 1.0 0.0
20 0.2065 0.0523 1.0331 0.0061 6.2933 0.5005 1.0 0.0

Table 4.2: Adaptive tuning of xpt = [∆t, lt]
T and the resulting analysis RMSE error,

averaged over assimilation steps between t = 1000 and t = 100000, std denotes standard
deviation of the estimates from the mean over time.

Results for scenario (ii)

N
mean
RMSE

std
RMSE

mean
∆̄t

std ∆̄t
mean
l̄t

std l̄t
mean
r̄t

std r̄t

5 0.2094 0.0521 1.0317 0.0075 5.6154 0.7289 1.0059 0.0215
10 0.2072 0.0509 1.0354 0.0058 6.7455 0.9541 1.0031 0.0230
20 0.2064 0.0511 1.0355 0.0055 6.7182 0.9202 1.0018 0.0193

Table 4.3: Adaptive tuning of xpt = [∆t, rt, lt]
T and the resulting analysis RMSE error,

averaged over assimilation steps between t = 1000 and t = 100000, std denotes standard
deviation of the estimates from the mean over time.

all three parameters, Table 4.3 the MPF algorithm achieves only negligible increase of
the RMSE over the scenario with known observation variance r.

We note that good performance of the adaptive tuning was achieved for as low as
10 particles. This result is especially promising since it suggests that even more chal-
lenging assimilation scenarios can be handled at comparable computational complexity.
Addition of one extra tuning parameter in second scenario had negligible impact on the
performance.

4.3.4 Model with Random Perturbations

For comparison with (Li et al., 2009), we tested the MPF algorithms on data simulated
with model (4.3.1) with additive random perturbations

dxj
dt

= xj−1(xj+1 − xj−2)− xj + F + αet, (4.3.5)

where et is Gaussian distributed noise with zero-mean and unit variance. The observed
data were generated using model (4.3.5) with α = 4 for 100000 steps. The same
setup of the EnSRF as in the previous experiments was used, including the same initial
conditions. Results for estimation for the 100000 steps are displayed in Table 4.4. Since
parameter α is stationary, the time evolution of the parameter estimates ∆̄t, l̄t using
MPF is reaching the stationary values in Table 4.4 after the initial convergence period.
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Results for imperfect model scenario, α = 4
mean RMSE std RMSE mean ∆̄t std ∆̄t mean l̄t std l̄t mean r̄t std r̄t

0.3563 0.0542 1.1944 0.0230 3.0810 0.8198 1.0055 0.0618

Table 4.4: Adaptive tuning of xpt = [∆t, lt, rt]
T for system with random model errors

(4.3.5) with variance α = 4. The resulting analysis RMSE error is averaged over assim-
ilation steps between t = 1000 and t = 100000, time averages of parameter estimates
are displayed in tandem with standard deviation of the estimates from the mean over
time. Both algorithms were run with N = 10 and Neff = 0.8N .

Note that the additive noise was compensated by higher values of ∆̄t and lower values
of l̄t than that of the perfect model, Table 4.3. This is in agreement with findings of
Li et al. (2009) and also expected because α is increasing the background covariance
(reflected by higher inflation) and decreasing correlation between elements of the state
vector (reflected by lower length-scale).

For testing the tracking properties of the MPF algorithms, we have designed a
scenario with time varying αt according to a triangular profile. Posterior densities of
the parameters obtained using the MPF algorithm are displayed in Fig. 4.3.3. For this
experiment, we increased the variances of random walks (4.2.1) to

σ∆ = 0.01∆
(i)
t−1 + 0.001,

σl = 0.01l
(i)
t−1 + 0.001,

σr = 0.01r
(i)
t−1 + 0.01.

This experiment confirms the trend of increasing ∆t and decreasing lt with increasing
αt. Note that when α returns to the stationary values, so do the estimates of the tuning
parameters.

4.4 Summary
The purpose of this chapter is to present marginalized particle filtering (also known
as Rao-Blackwellized filtering) as an attractive tool for research of data assimilation
methods in environmental modeling and especially for tuning of ensemble filters.

The method is based on partitioning of the state (or unknown parameters) into two
parts: (i) unknowns estimated by a conditional filter, and (ii) unknowns estimated by
a particle filter. The original MPF assumes that the conditional filter is analytically
tractable, which allows to prove advantages over a pure particle filter. In this chapter,
we propose to replace analytical filters by ensemble filters. The resulting algorithm is
loosing its theoretical advantages, however it allows to address the problem of tuning
of ensemble filters. We have shown that the number of particles needed to achieve
acceptable performance is rather low, for example 10 particles are sufficient to achieve
on-line tuning of the inflation factor and the length-scale parameter in the EnSRF for
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Figure 4.3.3: Estimation of system (4.3.5) with time-varying αt of triangular profile
displayed at the bottom. Posterior densities of the parameters are displayed via their
mean value (blue line) and region between minimum and maximum value of the particles
(gray area).
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the 40-dimensional Lorenz-96 model. Furthermore, we have shown that the approach
easily extends to estimation of unknown variance of the observation error and poten-
tially any other tuning parameters. Once again, 10 particles were sufficient to achieve
performance comparable to that of the best-tuned filter.

Computational cost of the MPF framework is high since it requires running N filters
in parallel. We expect that advantages of parallel evaluation of ensemble filters over
adaptation of a single ensemble filter will become apparent in even more demanding
scenarios. Computational complexity may prevent its operational use, however, it may
be an important tool for gaining insight into the ensemble filters in the same spirit as
in (Anderson, 2007b).

The potential of the framework has been demonstrated on on-line tuning of the
ensemble filters. However, it is not the only scenario where it can be used. Since
posterior density of the MPF is a mixture of Gaussians, the approach may be adapted
for estimation of Gaussian mixture filters that have been studied, e.g. by Bengtsson
et al. (2003). More work is required to discover full potential of the method. The
open problems include justified design of suitable models of parameter evolution and
approximations reducing the computational cost of the MPF. However, the existence
of the exact solution allows to design the necessary computational simplifications to
resemble its behavior.
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Chapter 5

Data Assimilation in the Early Phase

5.1 Problem Statement

Assume an accident in a nuclear power plant followed by an atmospheric release of
radionuclides. After the release, there is a radioactive plume moving over the terrain.
Urgent protective measures must be introduced as soon as possible to protect the pub-
lic from the harmful effects of ionizing radiation. These are planned with regards to
expected exceeding of regulatory radiation limits given by the law. Decision making
regarding countermeasures is supported with radiological measurements from terrain.
However, particularly in the first hours of the accident, the measurements are sparse
and it is not possible to base prognoses of radiation situation just upon them solely.
For determination of affected areas and estimation of radiation levels in a wider scale,
atmospheric dispersion models (ADMs) are used. Given a meteorological forecast and
values of other important control variables of an ADM, the model evaluates a prediction
of spatial and temporal distribution of radionuclides on a computational grid in terms
of activity concentration in air. It is an important radiological quantity which can be
used for calculation of other quantities like deposition and doses. Under the term con-
trol variables we understand a set of inputs to the model, which parameterize initial
conditions and important physical processes influencing the spreading of the pollutants,
e.g., information on the source term (composition and magnitude of the release and its
dynamics) and meteorological inputs.

In reality, our knowledge of the release conditions is limited. Typically, meteorologi-
cal inputs are set using a numerical prediction model and other control variables are set
with expert-provided values. This subjective choice can introduce significant errors into
the resulting predictions. What is more, the chaotic nature of the atmosphere makes
impossible to obtain accurate results using a model of a finite complexity and evaluated
with finite computational resources. In other words, inaccurate model initialized with
erroneous inputs can not provide reliable predictions. Relying on them can lead in fatal
errors in the countermeasures planning. Inherent uncertainty of the problem is not
the only factor making the forecasting in the early phase challenging. There are also
strict time constraints caused by the problem dynamics and the urgent need of reliable
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information. There must be made a compromise between the time spent on evaluation
of the dispersion model and its accuracy.

Using data assimilation we can tune uncertain model inputs in a way that the model
output fits the available measurements. The number of variables is potentially large
but the most important subset can be identified for a specific scenario and a given
ADM (Eleveld and Twenhöfel, 2004; Pecha et al., 2007). Recent advances in this field
have shown great promise in improving model performance through optimal calculation
of emission and meteorological inputs by a systematic comparison of observations and
modeled concentrations. These improved estimates may in turn be used as inputs
to long- and short-range atmospheric dispersion models, resulting in greatly improved
efficiency of the countermeasures.

In this chapter, we describe a new data assimilation method based on particle fil-
tering for estimation of important control variables of a parameterized ADM.

5.2 Proposed Data Assimilation Methodology

We propose a new data assimilation methodology based on particle filtering for re-
duction of uncertainty in atmospheric dispersion modeling during the early phase of a
radiation accident. We focus on the parametrized ADMs, where selected control vari-
ables are treated as random and we attempt to select their most plausible values in
consecutive time steps using available measurements.

5.2.1 State Evolution Model

Parametrized ADMs can be understood as deterministic functions of the control vari-
ables θ ∈ RNθ . It means, that all the uncertainty is assumed to be in values of the
variables, not in the parametrization itself. Trajectory θ1:t represents values of control
variables of the model up to time t and fully determines its propagation. Vector θt ag-
gregates values of control variables used for model propagation between time instances
t and t+1. Physics behind the dispersion modeling motivates us to distinguish between
two types of control variables, where each type must be treated differently:

Mutable control variables: Values of mutable control variables can—and are ex-
pected to—change in respective time steps. Typically, control variables describing
meteorological conditions must be treated as mutable in order to correctly simu-
late stochastic fluctuations of the wind field and other atmospheric phenomena.

Immutable control variables: Values of immutable control variables must the same
along the whole state trajectory. Typical representative is the magnitude of re-
lease in the case of an instantaneous releases. As the initial magnitude of release
affects the deposition, doses and other radiological quantities during the whole
propagation of the plume, its variation would violate the law of activity conser-
vation. Neglecting the radioactive decay, the integral of activity over time and

66



space must be equal to the initial value in all time steps. In context of the
classical estimation theory the immutable control variables denote the stationary
parameters .

We want to estimate the state trajectory θ1:t—from the Bayesian point of view, evaluate
the posterior p(θ1:t|y1:t)—in successive time steps t = 1, 2, . . .. Let the state θt be
comprised of two parts, the immutable variables ηt and the mutable variables νt:

θt =

[
ηt
νt

]
. (5.2.1)

We assume that ηt and νt are mutually independent. Since the immutable variables are
not allowed to change during the model propagation, we can evolve only the mutable
part of θt and the state transition pdf has then the form:

p(θt|θt−1) = p(ηt,νt|ηt−1,νt−1)

= p(ηt|ηt−1)p(νt|νt−1) (5.2.2)
= δ(ηt − η1)p(νt|νt−1). (5.2.3)

5.2.2 Observation Operator

Measurements are assumed to be normally distributed with covariance matrix Rt and
mutually independent given the state trajectory θ1:t,

yt ∼ N (H(θ1:t),Rt) , (5.2.4)

where H(·) is an observation operator. It performs two tasks. Firstly, the observa-
tion operator relates measured radiological quantity and an output quantity given by
the dispersion model. Secondly, it performs spatial interpolation in the case that the
computational and receptor grids are not aligned. Given a radiological quantity evalu-
ated on a computational grid St, observation operator yields a vector of measurements
yt ∈ RNy evaluated in a set of receptor points SR

t = {sR
1,t, . . . , s

R
Ny ,t
}. Generally, the set

SR
t can vary between time steps. This would be of a particular importance in the case

of measurements provided by the moving mobile groups. In the case of a stationary
radiation monitoring network we can treat the observation operator as time invariant,
i.e., Ht = H.

5.2.3 Data Assimilation Algorithm

The posterior pdf is approximated using particle filter,

p(θ1:t|y1:t) ≈
N∑
i=1

w
(i)
t δ
(
θ1:t − θ(i)

1:t

)
, w

(i)
t ∝

p
(
θ

(i)
1:t|y1:t

)
q
(
θ

(i)
1:t|y1:t

) , (5.2.5)
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Particles are represented with trajectories θ(i)
1:t parameterizing N simultaneously prop-

agated dispersion models.
If the proposal density

q
(
θ

(i)
1:t|y1:t

)
= q

(
η

(i)
1 |y1:t

)
q
(
ν

(i)
1:t|y1:t

)
is badly chosen, the performance of the filter would be rather poor. Application of
sequential evaluation of weights would results in a computationally ineffective scheme,
where the computational resources would be wasted on propagation of particles with
small weights. Enormous number of particles would be needed to achieve a good per-
formance.

Significant improvements can be achieved by application of the adaptive proposal se-
lection methodology described in Section 3.5.2, where the proposal density q(θ(i)

1:t|y1:t) is
re-estimated in respective time steps using the weights w(i)

t . Drawbacks of this approach
is the fact that the dispersion models and the weights w(i)

t must be always recomputed
because of the immutable variables. However, this adaptive procedure guarantees that
the trajectories with low weights are discarded and a new population of trajectories is
sampled from the regions of the state-space determined by particles with high weights.
In other words, the sequential update of the proposal pdf suppresses the effect of sample
impoverishment. The resulting algorithm is summarized in Algorithm 3.5.

5.2.4 Evaluation of Radiological Quantities of Interest

Usually, we are not interested just in the estimates of control variables but also in
radiological quantities evaluated by the dispersion model. Let the radiological quantity
of interest be a continuous function C(s, τ,θ) of spatial coordinates s = (s1, s2, s3);
time since the release star τ ; and the control variables θ. For computational reasons,
C(s, τ,θ) is discretized in both spatial and temporal domains. Let ct ∈ RNc be a
vector aggregating values of C(s, τ,θ) evaluated in an ordered set of spatial location
S = {s1, . . . , sNc} forming a computational grid in time τ = ∆τ t:

ct =

 C(s1,∆τ t,θ1:t)
...

C(sNx ,∆τ t,θ1:t)

 .
Here, ∆τ is the time step length and t is time step index. In the following text,
ct ≡ C(θ1:t).

Using the particles c
(i)
t = C(θ

(i)
1:t), i = 1, . . . N , the mean value c̄t and the covariance

Σc
t of the radiological quantity evaluated by the dispersion models can be at each time

step computed using the posterior (5.2.5), as follows,

c̄t =
N∑
i=1

w
(i)
t c

(i)
t , Σc

t =
N∑
i=1

w
(i)
t

[(
c

(i)
t − c̄t

)(
c

(i)
t − c̄t

)T
]
. (5.2.6)
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5.3 Application to Gaussian Puff Model

In this section we describe application of the proposed methodology to the assimilation
of the Gaussian puff model with the time integrated gamma dose rate measurements.

5.3.1 Parametrization of Gaussian Puff Model

The idea behind the methodology allows for estimation of an arbitrary set of control
variables. However, we restrict to the parametrization of the following physical quanti-
ties identified as the most influencing the resulting dose rates: magnitude of instanta-
neous release Qi, wind speed u = |u| and wind direction φ. Using location parameters
Qi,?, u?t , φ

?
t and control variables θt = (ωt, ξt, ψt)

T, the three physical quantities are
parametrized:

1. Parametrization of magnitude of release Qi:

The overall magnitude of release must be treated as time invariant. It is param-
eterized using multiplicative immutable control variable ωt ∈ R+ as follows:

Q = ωtQ
i,?. (5.3.1)

2. Parametrization of wind speed u:

In contrast to the overall magnitude of release, the wind direction is assumed to
be variable in time. This assumption is in agreement with the stochastic nature of
the atmospheric flow. It is parametrized using control variable ξt ∈ R as follows:

ut = (1 + 0.1ξt)u
?
t + 0.5ξt. (5.3.2)

We can see, that ut = u0 given ξt = 0.

3. Parametrization of wind direction φ:

Wind direction is also assumed to be variable over time and homogeneous over
the whole calculation domain at a time. It is parametrized using control variable
ψt ∈ R as follows:

φt = φ?t + ψt. (5.3.3)

From the parameterization is evident that the wind field in assumed to be homogeneous
in the whole computational domain at a time. This simplifying assumption is reasonable
in the case of a short-range dispersion modeling, where the wind field in not likely to
change dramatically in space. Location parameters u?t and φ?t represent the wind speed
and the wind direction given by a meteorological forecast and Qi,? is the initial estimate
of source term based on the safety parameters of a NPP. Similar parameterizations can
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be constructed for some other physical processes involved, e.g., magnitude of vertical
and horizontal dispersion, dry and wet deposition.

The state vector θt is evolved using a transitional pdf

p(θt|θt−1) = δ(ωt − ω1)p(ξt|ξt−1)p(ψt|ψt−1), (5.3.4)

and the process is initialized with a prior pdf

p(θ1) = p(ω1)p(ξ1)p(ψ1). (5.3.5)

5.3.2 Observation Operator

Given the control variables and other inputs, the model (2.1.16) evaluates activity
concentration in air in Bqm−3. The observation operator converting the concentration
to the time integrated gamma dose in Gy is defined by (2.2.8)–(2.2.9).

5.3.3 Evaluation of Weights

The weights are evaluated using

w
(i)
t ∝ p(θ

(i)
1:t|y1:t)

q(θ
(i)
1:t|y1:t)

=
p(yt|θ(i)

t )p(θ
(i)
t |θ

(i)
t−1)p(θ

(i)
1:t−1|y1:t−1)

q(θ
(i)
1:t|y1:t)

∝
∏t

j=1 p(yj|θ
(i)
j )p(θ

(i)
j |θ

(i)
j−1)

q(θ
(i)
1:t|y1:t)

. (5.3.6)

For computational reasons, the weights are evaluated in the logarithmic scale according
to Section 3.5.3 and the product in (5.3.6) becomes a sum of logarithms

lnw
(i)
t =

t∑
j=1

[
ln p(yj|θ(i)

j ) + ln p(θ
(i)
j |θ

(i)
j−1)

]
− ln q(θ

(i)
1:t|y1:t).

The normality of the observation model (5.2.4) determines the likelihood functions
p(yj|θ(i)

j ) to be

p(yj|θ(i)
j ) = (2π)−

Ny
2 (det Rj)

− 1
2 exp

[
−0.5

(
yj −H(θ

(i)
j )
)T

R−1
j

(
yj −H(θ

(i)
j )
)]

.

Matrix Rj is the covariance matrix of observations yj. Since the observations are
assumed to be conditionally independent given θj, covariance matrix Rj is diagonal
and the observations can be processed sequentially using

p(yj|θ(i)
j ) =

Ny∏
k=1

p(yk,j|θ(i)
j ) = (2π)−

Ny
2

Ny∏
k=1

σ−1
k,j exp

[
−0.5

(
yk,j −Hk(θ

(i)
j )
)2

/σ2
k,j

]
.

70



Here, Hk is a reduced observation operator evaluating just time integrated gamma dose
rate in location sR

k ∈ SR, and σ2
k,j = Rj[k, k], k = 1, . . . , Ny, is the kth diagonal element

of Rj.

5.3.4 Adaptive Selection of Proposal Density

We apply the adaptive proposal selection procedure described in Section 3.5.2. Let the
proposal density be normally distributed. Using conditional independence of control
variables we can write:

q(θ1:t|y1:t) = q(ω1, ξ1, . . . , ξt, ψ1, . . . , ψt|y1:t)

= N (ω1; ω̄1,Σ
ω
t )N (ξt; ξ̄t,Σ

ξ
t )N (ψt; ψ̄t,Σ

ψ
t ). (5.3.7)

Vectors ξt = (ξ1, . . . , ξt)
T and ψt = (ψ1, . . . , ψt)

T aggregate wind speed and wind
direction in time steps 1, . . . , t. Their dimensions thus increase in time.

At each time step, moments of Gaussian pdfs in (5.3.7), mean values ω̄t ∈ R, ξ̄t ∈ Rt,
ψ̄t ∈ Rt and corresponding variance Σω

t and diagonal covariance matrices Σξ
t , Σψ

t , can
be estimated independently from the weights and the particles θ(i)

1:t = (ω
(i)
1 , ξ

(i)
t ,ψ

(i)
t )T:

ω̄1 =
N∑
i=1

w
(i)
t ω

(i)
1 , Σω

t =
N∑
i=1

w
(i)
t

(
ω

(i)
1 − ω̄1

)2

,

ξ̄t =
N∑
i=1

w
(i)
t ξ

(i)
t , Σξ

t [j, j] =
N∑
i=1

w
(i)
t

(
ξ

(i)
t [j]− ξ̄t[j]

)2

, j = 1, . . . , t,

ψ̄t =
N∑
i=1

w
(i)
t ψ

(i)
t , Σψ

t [j, j] =
N∑
i=1

w
(i)
t

(
ψ

(i)
t [j]− ψ̄t[j]

)2

, j = 1, . . . , t.

5.4 Numerical Experiment
In numerical experiment we assume an instantaneous release of radionuclide 41Ar with
half-life of decay 109.34 minutes. Radionuclide 41Ar was chosen for two reasons: Firstly,
since 41Ar is a noble gas, there is no deposition and consequently no groundshine. We
need to calculate only the gamma dose rate from cloudshine. Secondly, according
to Tables of Radioactive Isotopes (Browne et al., 1986), the radionuclide 41Ar emits
gamma radiation on energy level 1293.57keV with branching ration 99.1%. Generally,
for calculation of the gamma dose rate we need to assume all the energy levels and
their branching ratios specific to the given radionuclide. In the case of 41Ar we can
neglect the other energy levels within the remaining branching ratio 0.9% without any
significant loss of accuracy. Both these facts substantially simplifies gamma dose rate
calculations and makes the experiment more transparent. Since we simulate a release
of a noble gas, the deposition is not calculated here.
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Data assimilation is performed in time steps t = 1, . . . , 18. Duration of time step ∆τ

is set to 10 minutes. This step length was chosen because we assume that the radiation
monitoring network provides measurements of the time integrated gamma dose rate in
10-minute intervals (Dombrowski et al., 2009).

5.4.1 Computational and Observational Grids

Figure 5.4.1: Illustration of computational grid and monitoring network.

The computational domain is delimited with a square centered at the location of the
Czech nuclear power plant Temelin and with the side length 20km. The area is regularly
covered with a rectangular grid with the grid step 1km. The total number of grids points
is 41 × 41 = 1681. This area includes the emergency planning zone delimited with a
circle of radius 13km centered at the power plant. The zone delimits potential accident
site, where public is expected to be put in risk if exposed to the radioactive plume.

The measurements are assumed to come from a stationary radiation monitoring
network. Let the network comprises of 48 receptors placed in the four circular bands of
radii 1km, 5km, 10km, and 15km. In reality, the gamma dose rate receptors comprising
the monitoring network would be placed in settled areas, e.g., in towns and villages
within the zone. However, since we investigate the properties of the algorithm, the
configuration of receptor points is fully justifiable for our purposes. The receptors
closest to the center denote the receptors placed in the area of the power plant, the
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COORDINATES OF RECEPTORS
Rec. no. x [m] y [m] Rec. no. x [m] y [m] Rec. no x [m] y [m]

1 0 1000 17 4330 -2500 33 -8660 -5000
2 500 866 18 2500 -4330 34 -10000 0
3 866 500 19 0 -5000 35 -8660 5000
4 1000 0 20 -2500 -4330 36 -5000 8660
5 866 -500 21 -4330 -2500 37 0 15000
6 500 -866 22 -5000 0 38 7500 12990
7 0 -1000 23 -4330 2500 39 12990 7500
8 -500 -866 24 -2500 4330 40 15000 0
9 -866 -500 25 0 10000 41 12990 -7500
10 -1000 0 26 5000 8660 42 7500 -12990
11 -866 500 27 8660 5000 43 0 -15000
12 -500 866 28 10000 0 44 -7500 -12990
13 0 5000 29 8660 -5000 45 -12990 -7500
14 2500 4330 30 5000 -8660 46 -15000 0
15 4330 2500 31 0 -10000 47 -12990 7500
16 5000 0 32 -5000 -8660 48 -7500 12990

Table 5.1: Coordinates of the receptors comprising radiation monitoring network in the
numerical example.

tele-dosimetric system (TDS) on fence of the power plant. Schematic illustration of the
monitoring network and the computational grid is in Figure 5.4.1. The computational
points are represented with edges of the “chess board” and the receptors are denoted
with the red triangles. Coordinates of the receptors are in Table 5.1.

5.4.2 Simulation of Observations

Numerical experiment is performed as a twin experiment, where the measurements are
generated using a twin model and perturbed with a random noise. The twin model is
a dispersion model initialized with a set of inputs defining unknown conditions of the
“real” release. Convergence of the dispersion model initialized with a set of nominal
inputs to the twin model is then assessed.

The nominal values of the wind speed and the wind direction are hourly meteoro-
logical forecast from a numerical weather prediction model. The true values of the wind
direction are assumed to change every 10 minutes. The true wind speed is constant
and systematically higher than the nominal values. Summary of setting of the nominal
and the twin model is in Table 5.2:

1. Nominal values Qi,?, u?t , φ
?
t given by an expert and the meteorological forecast

(locations parameters).
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PARAMETERS OF NOMINAL MODEL AND TWIN MODEL
Immutable variables Mutable variables
Magnitude of release Wind speed Wind direction

Hour t Qi,? ωr
1 Qi,r u?t ξr

t ur
t φ?t ψr

t φr
t

1 1 5.0E+14 5.0 2.5E+15 2.0 0.71 2.5 270.0 0.0 270.0
1 2 2.0 0.71 2.5 270.0 10.0 280.0
1 3 2.0 0.71 2.5 270.0 20.0 290.0
1 4 2.0 0.71 2.5 270.0 30.0 300.0
1 5 2.0 0.71 2.5 270.0 40.0 310.0
1 6 2.0 0.71 2.5 270.0 50.0 320.0
2 7 2.0 0.71 2.5 280.0 50.0 330.0
2 8 2.0 0.71 2.5 280.0 60.0 340.0
2 9 2.0 0.71 2.5 280.0 70.0 350.0
2 10 2.0 0.71 2.5 280.0 60.0 340.0
2 11 2.0 0.71 2.5 280.0 50.0 330.0
2 12 2.0 0.71 2.5 280.0 40.0 320.0
3 13 2.0 0.71 2.5 290.0 20.0 310.0
3 14 2.0 0.71 2.5 290.0 10.0 300.0
3 15 2.0 0.71 2.5 290.0 0.0 290.0
3 16 2.0 0.71 2.5 290.0 -10.0 280.0
3 17 2.0 0.71 2.5 290.0 -20.0 270.0
3 18 2.0 0.71 2.5 290.0 -30.0 260.0

Table 5.2: Parameters of nominal and twin model. Nominal values Qi,?, u?t , φ
?
t of phys-

ical quantities treated as uncertain. “Real” values Qi,r, ur
t, φ

r
t of the quantities used for

simulation of measurements. Sought values of variables θr
t = (ωr

1, ξ
r
t , ψ

r
t) transforming

the nominal values into the real values using parameterizations (5.3.1)–(5.3.3).

2. “Real” values of physical quantities Qi,r, ur
t, φ

r
t used for simulation of measure-

ments.
3. Sought values of control variables θr

t = (ωr
1, ξ

r
t , ψ

r
t) transforming the nominal values

into the real values using parameterizations (5.3.1)–(5.3.3).

In the experiment we expect convergence of the estimated control variables θ̄t (5.2.6)
to θr

t. In Figure 5.4.2 we see the time integrated dose evaluated for the first three
hours of the release with the nominal model (left) and the twin model (right). Ra-
diation monitoring network SR is denoted with the red triangles. Measurements yt
are sampled during the twin model propagation in 10-minute intervals according to
yt ∼ N (H(θ1:t),Rt), where the observation operation H is given by (2.2.8)–(2.2.9).
Covariance matrix Rt is a diagonal matrix, where the standard deviations of elements
of yt are linearly proportional to measurements:

Rt[j, j] = (0.1yt[j] + 1.0E− 20)2 . (5.4.1)
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Figure 5.4.2: Time integrated gamma dose evaluated for the first three hours of the
release with the nominal model (left) and the twin model (right).

Here, Rt[j, j] and yt[j] denote the jth diagonal element of Rt and the jth element of
yt, respectively. Particles are initialized with values of control variables sampled from
prior pdf (5.3.5), where

p(ω1) = logN (0.5, 0.25),

p(ξ1) = U(−2, 2),

p(ψ1) = U(−22.5, 22.5).

Control variables are evolved using transitional pdf (5.3.4), where

p(ξt|ξt−1) = N (ξt−1, σ
2
ξ ), σξ = 0.4,

p(ψt|ψt−1) = N (ψt−1, σ
2
ψ), σψ = 2.5.

5.4.3 Results

We run the assimilation algorithm with N = 3000 particles for 18 steps covering the
first three hours of the release.

In Figure 5.4.3, the nominal model, the twin model, and the assimilated model are
compared. The results are visualized in terms of Dc integrated from time step 0 up to
time steps 6, 12, and 18, respectively. We see that the nominal model without the data
assimilation would predict doses smaller in magnitude and also the affected areas would
be misspecified. We can observe that the expected values of Dc up to time step t = 12
well approximate Dc evaluated by the twin model. During the last six assimilation
steps we observe a misfit of the wind direction. This is due to the lack of measurements
in the area where the puffs (particles) were during the third hour of their propagation,
see Figure 5.4.3 (bottom-right).
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Figure 5.4.3: Comparison of the nominal model, the twin model and the assimilated
model in time steps t = 6, 12, 18. The misfit of the wind direction in the last hour is
due to the lack of measurements in the area.

In Figure 5.4.4, estimates Q̄i, ūt, φ̄t (5.2.6) evaluated using nominal valuesQi,?, u?t , φ
?
t ,

weights w(i)
t and the states θ(i)

t of the re-computed state trajectories θ(i)
1:t in each time

step are visualized. We see how the estimated values of magnitude of release, wind
speed and wind direction (red lines) approach the values used for simulation of mea-
surements (green lines). Values of the physical quantities used for propagation of the
puffs are denoted with the blue dots. Only those particles with nonzero weights are
visualized. During the first five steps, the magnitude of release is correctly recognized
and stays tuned for the remaining time steps. Convergence to the correct wind speed
and wind directions is more rapid. The lack of measured information during the last
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six time steps cause, that the weights are approximately equal and the variances of
the estimates increase. With the non-informative weights, the algorithm does not have
enough information to correctly estimate the wind direction.

In Figure 5.4.5 we see how the expected values θ̄t of control variables (red lines)
approach the true values of control variables θr

t (green lines) used for simulation of
measurements. The gray bands denote the maximal and minimal values of particles in
each time step.

Figure 5.4.4: Estimated values of magnitude of release, wind speed and wind direction.
Green lines: values used for simulation of measurements; red lines: estimated values of
physical quantities; blue dots: values of particles with nonzero weights.

Figure 5.4.5: Estimated values of magnitude of release, wind speed and wind direction.
Green lines: values used for simulation of measurements; red lines: estimated values;
gray areas: regions between minimum and maximum values of the particles.
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Time evolution of time integrated doses Dc at selected receptor locations is visual-
ized in Figure 5.4.6. There is a good agreement between the doses generated by the
twin model and the assimilated model. In the case of receptors 40 and 41 we observe
a disagreement due to misspecification of the wind direction caused by the lack of
monitoring data.

Figure 5.4.6: Time evolution of time integrated doses Dc given by the twin model
(blue solid lines), the nominal model (green solid lines), and the assimilated model (red
dashed lines) at receptor locations 14, 15, 16, 27, 28, 29, 40 and 41 (see Table 5.1).
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5.5 Summary
This chapter has developed and demonstrated a new methodology for data assimilation
of gamma dose rate measurements with modeled activity concentration air. We propose
to use sequential Monte Carlo methods for estimation the most important parameters
of a dispersion model and thus improve the correspondence of the model output with
the measurements. The methodology is based on simultaneous propagation of multiple
dispersion models initialized with different inputs. The resulting algorithm seeks for
the most plausible values of these parameters (here referred as control variables) using
particle filtering with adaptive selection of the proposal density. Adaptive proposal
selection makes the algorithm more efficient, because the trajectories of particles are
sampled from a promising subspace of the full state-space. The presented form of
the proposal density is a rather simple choice and more elaborated approaches can be
constructed, e.g., a parametrized proposal in the form of a Gaussian mixture.

Introduced Bayesian methodology has very interesting properties suitable for the
solved scenario. The probabilistic aspect of the solution optimally combines a likely
answer with uncertainties of the available data. Since the uncertainty is accounted for,
the physical parameters of the model are the best parameters possible, not in the sense
of exact match, but because they lead to the best representation of the true system,
given the assumptions that were used to build the model. The corrected parameters
may in turn be used as input to long- and short-range atmospheric dispersion models,
resulting in greatly improved dose rate assessment.

The algorithm was demonstrated on estimation of magnitude of release, wind speed,
and wind direction of a Gaussian puff model. Since the measuring of concentration
itself is not technically feasible, nonlinear observation operator for transformation of the
activity concentration in air into the time integrated gamma dose rate was implemented.
Selected control variables were successfully estimated and the assimilated dose rates
were close to the dose rate from the twin model using a sparse observational grid. The
algorithm performed well in a meandering wind field, which is particularly important
under low-wind conditions. The extension of the algorithm to account for different
physical effects is straightforward, however, we have to consider computational demands
regarding intensive sampling during the particle filtering assimilation procedure.
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Chapter 6

Data Assimilation in the Late Phase

6.1 Problem Statement

Under the term late phase we understand the time period after the release of radioactive
material when the atmospheric transport (and subsequently the deposition) of radionu-
clides has finished. During the late phase, there is no more irradiation from the cloud
but the deposited radioactive material causes external irradiation from groundshine and
internal irradiation from inhalation of the re-suspended material. What is more, ra-
dionuclides migrate through the root system and foliage of plants into their edible parts
and thus can cause internal irradiation of people and livestock when eaten. This phase
extends over a period of several weeks or many years, depending on the magnitude and
type of initially deposited radionuclides.

From the point of view of radiation protection, the attention is focused on the long-
term monitoring of the radiation levels and modeling of its further transport towards
human body through the food chain. We are concerned with the deposition modeling.
Determination of the spatial and temporal distribution of radionuclides on terrain and
the rate of radionuclides removal is crucial for planning of the late phase countermea-
sures. These regard agriculture, foodstuffs production and water-resources management
(Pröhl et al., 1993).

In this chapter we propose a new data assimilation method based on the MPF frame-
work developed in Chapter 4 for joint estimation of a spatially distributed radiological
quantity and a set of parameters concerning the process of radioactivity removal.

6.2 Data Assimilation Scenario

During the late phase, the main aim of monitoring in to obtain a comprehensive pic-
ture of contamination of the environment Gering et al. (2004). The most significant
monitored radiological quantities are:

• The external dose rate from deposition (groundshine),
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• The spectrum of deposited radionuclides and the relative deposition on different
surfaces,

• The contamination of reference foodstuffs.

We focus on the groundshine dose modeling, specifically, on determination of the spatial
distribution of radionuclides and the groundshine dose time evolution. We approach
the problem using the data assimilation, where the groundshine dose measurements are
related to the predictions of deposition via groundshine dose evolution model. Here,
the highest uncertainty consists (i) in the initial displacement of the deposition and (ii)
in the rate of groundshine dose mitigation due to radionuclides removal and migration
processes. The initial deposition displacement is fully determined by the plume deple-
tion during the early phase. This means that the uncertainty regarding aerial pollution
propagation must be considered. What regards the issue of groundshine mitigation, two
dominant processes—radioactive decay and environmental removal—must be modeled.
The latter is given by parametrized formula (2.2.12). Generally, the parameterization
of environmental removal depends on many factors, including the place of model ap-
plication. A reasonable approach is to treat the parameters as random variables and
attempt for their estimation using available radiological measurements.

In this work, the following objectives of the groundshine dose modeling in the late
phase are addressed:

1. The estimation of initial deposition displacement using available measurements
referring to the beginning of the late phase.

2. The estimation of radiation levels in the contaminated areas and the prediction
of its time evolution.

3. The estimation of the speed of radionuclides removal.

The refined estimates of the spatio-temporal distribution of radioactivity and its time
evolution can in turn be used for long-term predictions.

Data assimilation in the late phase has its own specifics. The key differences com-
pared to the data assimilation in the early phase are as follows:

High state dimension: The state vector contains the values of deposition in an or-
dered set of spatial points. To achieve a good spatial resolution, we want to
estimate the deposition values on a dense computational grid. This means that
we have to employ an estimation methodology suitable for large-scale problems,
e.g., ensemble filtering.

Time constraints: With respect to the dynamics of the radionuclides transport in the
late phase and its duration, the time constrains are not so strict as in the early
phase. Particularly in the case of a retrospective analysis, the time constraints
are of a minor interest.
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Higher amount of available data: We can assume that the number of available
measurements is higher than in the early phase. Monitoring strategies in the
late phase combine various monitoring systems in an operational way to meet
the requirements of off-site emergency management. We can assume that the
observations come from the airborne gamma spectrometry. It is a powerful tool
capable of rapid mapping of contamination levels in a broader scale, which was
demonstrated during the Chernobyl accident (Gering et al., 2004).

With respect to the above specific properties, the data assimilation strategy must be
appropriately chosen. We propose to use the marginalized particle filtering framework
developed in Chapter 4. Here, the uncertain parameters of the environmental removal
are estimated using the particle filter and the spatio-temporal distribution of the de-
position given the parameters is estimated using the ensemble square root filter. What
results is a hybrid filter, where N weighted ensemble filters are simultaneously run.
Overall rate of environmental removal in the considered area is estimated using the
particle filter and the ensemble filter account for local characteristics.

For numerical reasons, the calculations are performed in terms of deposition. Trans-
formation of the deposition into the groundshine dose (2.2.10) can be simply done using
the dose rate conversion factor.

6.3 Proposed Data Assimilation Methodology
Let dt ∈ RNd be a vector of deposition values in a set of computational points S =
{s1, . . . , sNd

}. Let θt ∈ RNθ aggregate radionuclides removal rate parameters and pa-
rameters influencing magnitude and structure of model error in the ensemble filter.
We use marginalized filtering framework introduced in Chapter 4, where we substitute
xct ≡ dt, xpt ≡ θt in factorization (3.6.1), yielding the state vector

xt =

[
dt
θt

]
. (6.3.1)

Parameters θt are estimated using the particle filter and the deposition field dt is
estimated using the conditional ensemble square root filter. The resulting posterior is
of the form given by (3.6.3).

6.3.1 State Evolution Model

Model M(d,θ, ε) describing the evolution of deposition d is a non-linear function of
parameters θ and zero-mean mutually independent random noise ε,

dt =M(dt−1,θt, εt).

From (2.2.11) follows that given particular values of θt, the model becomes linear in dt
and we can construct a linear state evolution model for fixed θt−1 and θt represented
with a matrix M,
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dt = M(θt)dt−1 + εt,

Mt =
fR(t)fE(t,θt)

fR(t− 1)fE(t− 1,θt−1)
I. (6.3.2)

Determination of spatio-temporal distribution of deposition and the speed of its
removal can be interpreted as estimation of the augmented state xt comprised of the
vector dt of the deposition values on a grid and the vector θt of variables parame-
terizing the removal speed. Since we attempt for estimation of the model error, its
parameterization is also included into θ. The state is evolved using transitional pdf

p(xt|xt−1) = p(dt,θt|dt−1,θt−1)

= p(dt|dt−1,θt,θt−1)p(θt|dt−1,θt−1),

where the time evolution of θt is assumed to be dependent just on its previous value,

p(θt|dt−1,θt−1) = p(θt|θt−1).

The time evolution of dt is given by a Gaussian pdf

p(dt|dt−1,θt,θt−1) = N
(
d̄t|t−1,Pt|t−1

)
, (6.3.3)

d̄t|t−1 = Mtd̄t−1|t−1, (6.3.4)

where d̄t|t−1 and Pt|t−1 are predictive statistics evaluated by the time update step of
the ensemble filter. Since the parameterization of model error is included in θt, the
predictive error covariance matrix Pt|t−1 is a function of θt.

6.3.2 Observation Operator

Groundshine dose measurements given on an observational grid SR
t = {sR

1,t, . . . , s
R
Ny ,t
}

are aggregated in a vector yt ∈ RNy . The measurements assumed to be normally
distributed with covariance matrix Rt and mutually independent given the state xt,

p(yt|xt) = N
(
Hdt|t−1,Rt

)
. (6.3.5)

Covariance Rt describes the instrumental error of the measuring device and the linear
observation operator H relates the deposition with the groundshine dose. In the case
that the observational and the computational grids are not aligned, the operator also
performs a spatial interpolation using the bilinear interpolation.
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6.3.3 Evaluation of Weights

The normality of the observation model (6.3.5) implies the likelihood function used for
evaluation of weights in the particle filter has the form

p(yt|y1:t−1,x
(i)
t ) ∝ det

(
Zt(θ

(i)
t )
)− 1

2
exp

[
−1

2

(
v

(i)
t

)T

Z−1
t (θ

(i)
t )v

(i)
t

]
, (6.3.6)

where v
(i)
t = yt −Hd̄

(i)
t|t−1, Z

(i)
t = HP

(i)
t|t−1H

T + Rt. Note, that the covariance matrices
Z

(i)
t are explicitly conditioned on vectors θ(i)

t corresponding to particles.
Since the covariance square roots are stored in EnSRFs, it would be beneficial to

avoid evaluation of the full covariance matrices. This can be achieved using the results
of Appendix B. Let F

(i)
t and S

(i)
t|t−1 be square roots of covariance matrices Z

(i)
t and P

(i)
t|t−1,

respectively:

Z
(i)
t = F

(i)
t

(
F

(i)
t

)T

, P
(i)
t|t−1 = S

(i)
t|t−1

(
S

(i)
t|t−1

)T

.

Using the result of Appendix B and substituting B = S
(i)
t|t−1, C = Ht, and D = Rt, it

follows that [ (
F

(i)
t

)T

0

]
= T

 (S
(i)
t|t−1

)T

HT
t

R
T
2

 ,
where T ∈ RNy×Ny . Having upper triangular Cholesky factor F

(i)
t of Z

(i)
t , we can use

(3.5.20) for computing the particle weights in logarithmic scale.

6.4 Numerical Experiment

We focus on modeling of the groundshine in the zone of emergency planning during the
first two years after a severe reactor accident. In our numerical experiment we assume
a deposition of radionuclide 134Cs with half-life of decay T1/2 = 2.0648 years.

We want to perform a retrospective analysis using historical measurements sampled
in one-month intervals for the time period of two years. The augmented state vector is
of the from (6.3.1), where dt accounts for spatio-temporal distribution of the deposition
and θt describes the rate of radionuclides removal and the magnitude of model error.
For given θt, deposition dt is estimated with the ensemble square root Kalman filter
with multiplicative inflation of covariance (3.4.19) and evolved using the model (6.3.3).

Since the assumed time period is much shorter than the expected half-life of slow
component of the environmental removal, we do not treat T s in (2.2.12) as random and
set it with a fixed value. We estimate just the half-life of the fast component T f and
its fraction df . Fraction of the slow component ds is fully determined by the binding
condition df + ds = 1. Parameters θt = (df

t, T
f
t ,∆t)

T are evolved using transitional pdf

p(θt|θt−1) = p(df
t|df

t−1)p(T f
t|T f

t−1)p(∆t|∆t−1), (6.4.1)
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where the evolution of its elements is modeled by random walk processes

p(df
t|df

t−1) = N (df
t−1, σ

2
d), σd = 0.05df

t−1 + 0.01, (6.4.2)
p(T f

t |T f
t−1) = N (T f

t−1, σ
2
T ), σT = 0.05T f

t−1 + 0.01,

p(∆t|∆t−1) = tN (∆t−1, σ
2
∆, [1,∞]), σ∆ = 0.05∆t−1 + 0.01. (6.4.3)

Proposal density of the particle filter is chosen as (6.4.1) yielding the formula for
recursive evaluation of weights

w
(i)
t ∝ p(yt|θ(i)

t )w
(i)
t−1, i = 1, . . . , N.

6.4.1 Computational and Observational Grids

The deposition is estimated on a polar grid covering the eastern half of the zone of
emergency planning using total number Ny = 136 observations. Rectangular obser-
vational grid with Nd = 520 grid points has the grid step 1.5km. Illustration of the
observational and computational grid is in Figure (6.4.1). The fact that the polar
computational grid and the rectangular observational grid are not aligned means that
the observation operator must interpolate modeled values into the locations of receptor
points. We implemented a linear observation operator H using the bilinear interpola-
tion.

6.4.2 Estimation of Prior Distribution of Deposition

Let us recall, that the initial conditions in the late phase are fully determined by
the plume trajectory and plume depletion during the early phase. For simulation of
the release we use atmospheric dispersion model from the environmental code HARP
(HAzardous Radioactivity Propagation) (Pecha et al., 2007). It is a segmented Gaussian
plume model capable for simulation of many physical processes.

We performed an extensive Monte Carlo simulation to consistently account for un-
certainty connected with the plume propagation. The simulation covered a broad range
of possible release scenarios, where 14 parameters υ = (υ1, . . . , υ14)T of the dispersion
model were treated as random. The list of parameters selected upon uncertainty study
performed with the model is in Table (6.1). The total number of 5000 model realization
were computed using inputs {υ(1), . . . ,υ(5000)} sampled from a joint prior pdf p(υ).

Let {d(1)
0 , . . . ,d

(5000)
0 } be deposition vectors generated using the dispersion model

initialized with different sets of input parameters {υ(1), . . . ,υ(5000)}. Prior pdf p(d0) =
N (d̄0,Σ

d
0 ) represents an empirical distribution of the initial deposition:

d̄0 =
1

5000

5000∑
i=1

d
(i)
0 , Σ0 =

1

4999

5000∑
i=1

(
d

(i)
0 − d̄0

)(
d

(i)
0 − d̄0

)T

.
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Figure 6.4.1: Illustration of computational and observational grids. We focus on the
eastern half of the zone of emergency planning.

Param. Physical effect Param. Physical effect
υ1 intensity of release υ8 advection speed of plume
υ2 horizontal dispersion υ9 wind profile
υ3 horizontal fluctuation of wind dir. υ10 vertical dispersion
υ4 dry deposition of elements υ11 mixing layer height
υ5 dry deposition of aerosols υ12 heat capacity of the effluent
υ6 elution of elemental. iodine υ13 precipitation intensity
υ7 elution of aerosols υ14 time shift of precipitation

Table 6.1: Parameters treated as uncertain during Monte Carlo sampling of candidates
on ensemble members.

6.4.3 Simulation of Observations

Measurements are simulated from the deposition vectors dtwin
t , t = 1, . . . , 24, evaluated

using (2.2.11) and an initial vector dtwin
0 computed with the HARP model with initial-

ized with a set of inputs υtwin. The speed of environmental removal in the twin model is
determined by the fast component with fraction df = 0.54 and half-life T f = 1.20 years.
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Measurement vectors yt are sampled from dtwin
t in receptor locations and perturbed

with zero-mean Gaussian noise according to

yt ∼ N (Hdtwin
t ,Rt). (6.4.4)

The standard deviation of the observation error is a linear function of the measured
values ytwin

t = Hdtwin
t ,

Rt[j, j] = (0.1ytwin
t [j] + 500)2, j = 1, . . . , Ny.

Deposition generated using the twin model is in Figure 6.4.2 (top).

Figure 6.4.2: Left column: Visualization of initial deposition of the twin model dtwin
0

(top) and of the initial ensemble mean (bottom). Right column: Interpolation of dtwin
0

projected into the space of observations using (6.4.4) (top) and interpolation of the
initial ensemble mean projected into the space of observations using (6.4.4) (bottom).
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6.4.4 Selection of Prior Ensemble

EnSRFs within the MPF framework are initialized with a prior ensemble. This ensemble
represents our initial belief on distribution of the deposition at the beginning of the
late phase. In Section 6.4.2 we estimated the prior distribution of the deposition using
5000 realizations generated with the HARP system. However, to achieve a better
agreement of the initial ensemble with the spatial localization of the deposition, we
can use measurements y0 referring to the beginning of the late phase and select those
realizations from the set {d(1)

0 , . . . ,d
(5000)
0 }, which are in the best agreement with the

measurements. This procedure increases the representativeness of the prior ensemble.
Realizations are weighted with the likelihood function

p(y0|,d(i)
0 ) ∝ det (Z0)−

1
2 exp

[
−1

2

(
y0 −Hd̄

(i)
0

)T

Z−1
0

(
y0 −Hd̄

(i)
0

)]
,

Z0 = HΣd
0 HT + R0.

Resulting weights are in Figure 6.4.3. We used the multinomial re-sampling and selected
20 realizations which were included into the prior ensemble. 2-dimensional visualization
of the prior ensemble mean is in Figure 6.4.2 (bottom).

Figure 6.4.3: Weights of candidates d
(i)
0 on members of initial ensemble.

6.4.5 Results

We run the data assimilation algorithm with 100 particles for 24 steps, i.e., 100 ensemble
square root filters were run using different parameters θ(i)

t in respective time steps. In
Figure 6.4.4 we see the deposition values for a randomly selected receptor location. We
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Figure 6.4.4: Results for a selected observation location. Blue line: true deposition
(twin model); green dots: measurements and their standard deviations; cyan dots:
prior estimates (forecasts); gray area: standard deviation of the forecast error; red
dots: posterior estimates.

see that the posterior values (red dots) becomes identical with the true deposition (blue
line) given by the twin model. Also that the variance of estimates (gray area) decreases
with time.

In Figure 6.4.5 we see spatial visualization of the data assimilation results for time
step 0, 8, 16, and 24. The nominal model, the twin model and the assimilated model
are compared in respective time steps. We see that the ensemble localization procedure
perform well and the initial estimate of affected area is similar to that given by the twin
model. Already after the first assimilation cycle we obtain a good agreement between
the assimilated model and the twin model. In the remaining time steps we observe,
how the assimilated model approaches the twin model. To achieve a good agreement
in all the computational points, more data assimilation cycles would be needed.

Besides the time evolution of the deposition we also estimate the speed of radionu-
clides removal given by the fast component of the environmental removal. Estimated
parameters df and T f are assumed to be time invariant. Comparison of the “true” pa-
rameters used for the simulation of measurement and the average values of the estimates
is in Table 6.2. We observe a good correspondence of the estimates and the true values.
The estimates can be in turn used as an input into the subsequent predictive models
regarding further transport of radionuclides through the environment.
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Figure 6.4.5: Visualization of assimilation results in time steps 0, 8, 16, and 24. Nomi-
nal model (prior mean), twin model (measurements) and assimilated model (posterior
mean) are in first, second and third column, respectively. Color scale is the same as in
Figure 6.4.2.
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Parameter “True” values Mean estimated values
df 0.54 0.57
T f 1.20 1.26

Table 6.2: Comparison of “true” parameters used for simulation of measurements with
those estimated using the data assimilation procedure.

The mean value of the estimated multiplicative inflation factor used for correction
of model error was 2.27 which indicate the fact that the spread of the initial ensemble
was heavily underestimated.

6.5 Summary
This chapter has addressed the problem of data assimilation in the late phase of a radi-
ation accident. We were concerned with the task of data assimilation of the forecasted
spatio-temporal distribution of deposition with the groundshine dose measurements.

In (Palma, 2005), ensemble Kalman filtering has been identified as the most promis-
ing approach for this task. We developed this idea further and applied the MPF frame-
work introduced in Chapter 4 for estimation of spatio-temporal distribution of the
groundshine in tandem with the speed of environmental removal. In the proposed data
assimilation method, particle filter approximates the posterior pdf of the global speed
of radionuclides removal, whereas the conditional ensemble square root filter accounts
for local variations in the deposition field reflected in groundshine dose measurements.

The performance of the method was demonstrated on a twin experiment, where
the groundshine dose evolution model was assimilated with groundshine dose measure-
ments. A release of 134Cs was simulated with the atmospheric dispersion model em-
bedded in the decision support system HARP. We performed an extensive Monte Carlo
simulation of the possible release scenarios in order to account for uncertainty regarding
the plume propagation during the early phase. Deposition fields resulting from 20 most
plausible release scenarios were used for initialization of the ensemble filters attached
to particles. The estimated deposition field approached that evaluated using the twin
model. The rate of environmental removal also was correctly identified. The results are
promising, however, the operational applicability remains to be demonstrated on real
deposition data.
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Chapter 7

Developed Software

In this chapter we describe different software tools developed for purposes of testing
of data assimilation methods and handling of the meteorological and other data. The
tools were developed in Python and C++ and they became parts of the decision support
system HARP (Pecha et al., 2007).

7.1 Visualization System

The visualization system is capable of producing publishing-ready visualizations of ra-
diological and meteorological quantities on a scalable map background. It is suitable
particularly for visualization of spatial data given on a polar or a rectangular grid.
Besides the visualization of the static data, the system also allows for animation of the
plume movement, which can be used for examination of the radionuclides distribution
in time. All the visualizations of spatial data in this dissertation were created using the
system. The system also contains a set of tools for basic operations with the map, e.g.,
measuring of distances in the map, transformation of geographical latitude-longitude
coordinates into the UTM (Universal Transverse Mercator) coordinate system and vice
versa.

In Figure 7.2.1, time integrated activity concentration in air due to a simulated
release from the Czech NPP Temelin is visualized.

7.2 Preprocessor of Meteorological Data

Meteorological preprocessor is a tool for viewing and transformation of the meteoro-
logical data entering the HARP system. The preprocessor transforms the input 3-
dimensional HIRLAM (HIgh Resolution Limited Area Model) forecasts into the format
supported by the HARP system. In Figure 7.2.2, a sample wind field describing the
flow in vicinity of the Czech NPP Dukovany is visualized. Wind speed and direction
on the red grid is the HIRLAM data and the preprocessor performs its interpolation
on the green polar grid used by the HARP system.
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Figure 7.2.1: Spatial data visualization system. Visualization of a simulated release
from the Czech NPP Temelin.

Figure 7.2.2: Meteorological data preprocessor. Visualization of a sample wind field
describing the flow in vicinity of the Czech NPP Dukovany. HIRMAL data on the
red rectangular grid is interpolated into the points of the green polar grid used by the
HARP system.
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Figure 7.2.3: A diagram of the Monte Carlo framework for repetitive evaluation of
dispersion models.

7.3 Framework for Monte Carlo Sampling
For purposes of extensive Monte Carlo simulations with the dispersion models we im-
plemented a versatile framework (Hofman and Pecha, 2011). The framework is suitable
for automated repetitive evaluation of a dispersion model using different inputs (mete-
orological conditions and/or source term). The three main fields of its application are
as follows:

• Application in the field of probability safety assessment,

• Simulation of consequences of long term discharges of radionuclides into the at-
mosphere,

• Data assimilation in the early phase and the late phase of a radiation accident.

The diagram of the framework is in Figure 7.2.3. Firstly, meteorological forecasts are
fetched form a remote data-store and transformed into hourly meteorological forecasts
using meteorological preprocessor. Hourly forecast are stored on a local data-store.
Secondly, an ADM is repeatedly evaluated using different meteorology and/or different
source term. Generally, an arbitrary ADM can be inserted there. Hourly-evaluated
consequences are stored in the local data-store. User can then access the data-store
and perform statistical manipulations with the data. The system is equipped with a
user friendly graphical user interface for visualization of probabilistic answers.
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Figure 7.3.1: Example of a graphical output from the system. Background: visual-
ization of expected spatial distribution of total committed dose for adults based on
a sample two-year meteorological sequence (17520 hourly releases). Foreground: his-
togram representing distribution of committed doses in the highlighted point close to
the source.

In Figure 7.3.1 we see an example of the system output. In background, there is a vi-
sualization of the expected spatial distribution of total committed dose for adults based
on a sample two-year meteorological sequence (17520 hourly releases). In foreground,
there is a histogram representing distribution of committed doses in the highlighted
point close to the source.
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Chapter 8

Conclusion

This dissertation has addressed the application of advanced data assimilation methods
in the field of radiation protection. We focused on exploitation of particle filtering and
marginalized particle filtering for assessment of radiation situation in the early and the
late phase of a radiation accident. Respective data assimilation methodologies were
formalized using consistent Bayesian framework and notation.

The research has demonstrated that the particle filtering approach, when applied
in these areas, provides useful insights into the problems of interest, and results in
improved versatility over more traditional approaches, e.g. Kalman filtering. Data
assimilation systems based on particle filtering have a potential to be used for real-
world emergency response in the near future.

Since no data from real reactor accident were available, all experiments were per-
formed as twin experiments. In the twin experiments, measurements are simulated
using a model of the system under investigation and perturbed with a random noise.
The convergence of the estimated values to the known “background truth” can be then
easily assessed.

The contributions of this dissertation and recommendations for the future research
are presented in this chapter.

8.1 Summary of Contributions

The contributions of this thesis are now summarized chapter by chapter.

Chapter 2: This chapter concerned the physical models used in this dissertation.
Firstly, theoretical aspects of atmospheric dispersion modeling and radiological
modeling were provided. Secondly, developed numerical schemes used for prac-
tical implementation of the models were described. For demonstration of the
data assimilation algorithms developed in subsequent chapters we implemented
the Gaussian puff model evaluating activity concentration in air. For evaluation
of measurements we implemented an observation operator for transformation of
the activity concentration in air into the time integrated gamma dose rate.
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Chapter 3: Data assimilation was put into context of the Bayesian filtering. An
overview of the sequential data assimilation methods was provided with the fo-
cus on state space models. Kalman filtering, ensemble filtering, particle filtering,
and marginalized particle filtering is presented together with description of a nu-
merically efficient implementation of the filters. The chapter primarily serves as
a literature review of relevant Bayesian methods that are applied in subsequent
chapters.

Chapter 4: In this chapter, the issues of adaptive tuning of inflation factor and other
parameters within an assimilation scheme based on ensemble filtering was ad-
dressed. The developed framework based on the original MPF was presented as
a new method for merging particle filters with analytically intractable approxi-
mate filters. The performance of the method for tuning of ensemble filters was
presented on two scenarios with 40-variable Lorenz-96 model and compared with
the “best tuned” ensemble filters.

Chapter 5: This chapter considered on-line estimation of the source term and the
mean wind field during the plume propagations in the early phase of a radiation
accident. This task has been traditionally addressed using the Kalman filters,
where the non-linear state and the measurement models were approximated us-
ing the first-order Taylor expansion. To avoid this, we proposed a new particle
filtering data assimilation methodology with adaptive selection of the proposal
density. Our method can be used with an arbitrary parameterized atmospheric
dispersion model. The resulting algorithm performed well in the simulated instan-
taneous release scenario with the meandering wind field. The correction factors
of the release magnitude, wind speed and wind direction were well estimated from
a limited set of gamma dose rate measurements. The adaptive selection of the
proposal density ensured effective exploration of the state space.

Chapter 6: Application of the hybrid filtering methodology developed in Chapter 4
was extended to the problem of data assimilation in the late phase. The assim-
ilation scenario for identification of the affected areas and the determination of
the groundshine time evolution was formulated. In the proposed data assimila-
tion algorithm, the particle filter estimated the magnitude of model error and the
global speed of radionuclides removal, whereas the conditional EnSRF accounted
for local variations in the deposition field. The assimilation performance was
demonstrated using a simulated release, where an extensive Monte Carlo simula-
tion was performed to account for uncertainty regarding the initial displacement
of radionuclides. The speed of radionuclides removal was identified with high ac-
curacy. The disadvantage of this methods is its high computational cost, where
a number of ensemble filters must be run in parallel. However, in the case of
retrospective analysis, the computational cost is an issue of a minor importance.

Chapter 7: Review of different software tool supporting the development and testing
of the data assimilation methods was provided.
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8.2 Future Research Directions
Based on the entire research in this work, we suggest to keep focus on sequential Monte
Carlo methods in future investigations towards the operational application of data
assimilation in the examined field. Among the possible future research topics belong:

• The extension of the data assimilation methodology for the early phase to con-
tinuous releases approximated by a sequence of puffs. Since this will increase the
number of estimated parameters and bring a significant increase of computational
cost, a parallel implementation of the algorithm will be needed.

• The application of the data assimilation algorithm for the late phase with a more
elaborated deposition models based on multiple interacting compartments. This
step will provide a background for further application of data assimilation in the
propagation of radionuclides through the food chain.

• The twin experiments only provide a way for the initial validation of a considered
data assimilation method. It is desirable to validate the data assimilation methods
against existing real-case measurements.

• The implementation of the developed data assimilation algorithms into the HARP
system.
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Appendix A

Mean Value and Covariance of a Mixture of Gaussians
Assume a weighted mixture of n Gaussian distributions N (x;µ(i),P(i)) of a random
variable x with mean values µ(i) and covariance matrices P(i), i = 1, . . . , n:

p(x) =
n∑
i=1

w(i)N (x;µ(i),P(i))

The mean E[x] and covariance E[(x− E[x])2] of x can be calculated as follows:

E[x] =

ˆ
xp(x)dx

=
n∑
i=1

w(i)

ˆ
xN (x;µ(i),P(i))dx

=
n∑
i=1

w(i)µ(i),

E[(x− E[x])2] =

ˆ
(x− E[x])2 p(x)dx

=
n∑
i=1

w(i)

ˆ
(x− E[x])2N (x;µ(i),P(i))dx

=
n∑
i=1

w(i)

ˆ [(
x− µ(i)

)
+
(
µ(i) − E[x]

)]2N (x;µ(i),P(i))dx

=
n∑
i=1

w(i)
[
P(i) +

(
µ(i) − E[x]

)2
]

=
n∑
i=1

w(i)P(i) +
n∑
i=1

w(i)
(
µ(i) − E[x]

)2
.
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Appendix B

Computation of Time Update Using Square Roots
Let A ∈ Rn×n, B ∈ Rn×n, C ∈ Rm×n, D ∈ Rn×n be real matrices. Following Simon
(2006), let us suppose that we can find an orthogonal matrix T ∈ R2n×2n such that[

AT

0

]
= T

[
BTCT

D
T
2

]
(8.2.1)

=
[

T1 T2

] [ BTCT

D
T
2

]
=
[
T1B

TCT + T2D
T
2

]
, (8.2.2)

where T1,T2 ∈ Rn×n. From orthogonality of T follows that

TTT =

[
T1

T

T2
T

] [
T1 T2

]
=

[
T1

TT1 T1
TT2

T2
TT1 T2

TT2

]
=

[
I 0
0 I

]
,

and consequently

T1
TT2 = T2

TT1 = 0, (8.2.3)
T1

TT1 = T2
TT2 = I, (8.2.4)

where 0 and I are zero and identity matrices, respectively. Using (8.2.2) we can write

[
A 0

] [ AT

0

]
=

[
HtB D

1
2

] [ T1
T

T2
T

] [
T1B

TCT + T2D
T
2

]
=

[
HtB D

1
2

] [ T1
TT1B

TCT + T1
TT2D

T
2

T2
TT1B

TCT + T2
TT2D

T
2

]
.

From identities (8.2.3)–(8.2.4) follows

AAT = CBT1
TT1B

TCT
t + D

1
2 T2

TT2D
T
2

= CBBTCT + D
1
2 D

T
2 .
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So if we can find an orthogonal matrix T ∈ R2n×2n such that (8.2.1) is fulfilled, then
matrix A is equal to transpose of square root of Z = AAT. We can use various
methods to find the orthogonal matrix and resulting square root of Z, e.g., Householder
transform, Gram-Schmidt orthogonalization, or Givens rotations (Golub and Van Loan,
1996). Different methods give us different square roots of Z. From QR decomposition
we obtain a upper triangular factor of the Cholesky decomposition of Z.
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