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Abstract

The task of the decision support in the case of a radiation accident is to provide up-to-date

information on the radiation situation, prognosis of its future evolution and possible conse-

quences. The reliability of predictions can be significantly improved using data assimilation,

which refers to a group of mathematical methods allowing an efficient combination of ob-

served data with a numerical model. The report concerns application of the advanced data

assimilation methods in the field of radiation protection. We focus on assessment of off-site

consequences in the case of a radiation accident when radionuclides are released into the en-

vironment.

In this report we present a comprehensive review of data assimilation evaluated for pur-

poses of inclusion into the data assimilation and decision support system ASIM developed

within the grant project VG20102013018 provided by the Ministry of the Interior of the Czech

Republic. Besides the well established data assimilation methods like function fitting or con-

stant statistical methods we introduce a new approach to data assimilation in both the early

and the late phases of a radiation accident. Data assimilation is understood here as a par-

ticular case of recursive Bayesian estimation. Instead of using traditional estimation methods

for state-space models, we focused on sequential Monte Carlo methods, specifically particle

filtering and marginalized particle filtering.

Firstly, data assimilation methodology for the early phase of an accident is described. It

employs particle filtering with adaptive selection of proposal density for estimation of the most

important variables describing the aerial propagation of radionuclides. The general method-

ology is applicable to all parametrized atmospheric dispersion models. It is demonstrated on

a simulated release, where a bias of the basic meteorological inputs and the source term is

corrected using inference of gamma dose measurements.

Secondly, for the purpose of data assimilation in the late phase, we extended the idea of

marginalized particle filtering to analytically intractable approximate filters, e.g. ensemble

filters. The result is a hybrid data assimilation methodology, where multiple ensemble filters

are run in parallel. The methodology was applied for joint estimation of the spatial distri-

bution of deposition on terrain and estimation of the speed of radionuclides removal due to

environmental processes in a simulated release scenario.

Financial support has been provided from the project MV ČR VG20102013018.
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TDS Tele-Dosimetric System
UKF Unscented Kalman Filter
UTM Universal Transverse Mercator
i.i.d. independent, identically distributed (random variable)
pdf probability density function
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Chapter 1

Introduction

In the case of a radiation accident, the risk evaluation and the decision-making process
focused on protecting the public have the highest priority. The task of the decision
support is to provide reliable and up-to-date information on the radiation situation,
prognosis of its future evolution and possible consequences. Knowledge of spatial distri-
bution of radionuclides and prediction of the future evolution are essential for planning
of effective countermeasures. Historically, accidents in nuclear facilities have revealed
unsatisfactory level of preparedness and lack of adequate modeling tools. Great at-
tention has been paid to this topic since the Chernobyl disaster [OVZ07]. Nowadays,
decision makers dispose of complex computer systems intended to provide assistance to
them throughout various phases of the accident, e.g., [PS00, PHP07, TNDM99].

During the last decades, a great progress has been made in our understanding the
atmospheric dispersion and related natural phenomena. Despite all the effort, the
stochastic nature of involved physical processes, the deficiencies in their mathematical
conceptualization and particularly ignorance of the initial conditions prevent obtaining
of accurate results. The only way how to attain satisfactory accuracy of the model
forecasts is exploitation of observational data, which represent the only connection
with the physical reality. Observations are often sparse in both time and space and it
is not possible to get a complete picture of radiological situation based on monitoring
data alone, especially during the first hours after the accident.

Data assimilation provides a framework for optimal combination of numerical model
predictions and the available observational data [Kal03]. It makes possible to consis-
tently account for uncertainties in the model, its inputs and observations, and produces
probabilistic answers which are more informative than those deterministic. Data as-
similation is a compromise between the pure modeling approach on one hand and the
data mining approach on the other hand. Nowadays, data assimilation arise in many
scientific areas. The main fields of its application are meteorology, oceanography and
hydrology [PX09, WZZ00]. This work addresses the problem of exploitation of advanced
data assimilation methods in the field of radiation protection.

13
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1.1 Introduction and terminology
Data assimilation results from the methods of objective analysis introduced in the mid-
dle of the 20th century in order to eliminate a subjective human factor in numerical
weather prediction [Dal93]. It refers to a group of mathematical methods for estima-
tion of a state of a dynamic system by the means of combining multiple sources of
information, typically observational data with a numerical model of the system under
investigation. We are concerned with 4-D data assimilation, where the assimilation is
performed in time and space.

1.1.1 Classification of data assimilation methods

There are two basic approaches to data assimilation: (i) sequential assimilation, that
only considers observation made in the past until the time of analysis, which is the case
of real-time assimilation systems, and (ii) non-sequential, or retrospective assimilation,
where observation from the future can be used, for instance in a reanalysis exercise. In
this work, we focus on the first type of methods.

Another distinction can made between methods that are intermittent or continuous
in time. In an intermittent method, observations can be processed in small batches,
which is usually technically convenient. In a continuous method, observation batches
over longer periods are considered, and the correction to the analyzed state is smooth
in time, which is physically more realistic [BC02].

1.1.2 Data assimilation cycle

Data assimilation is performed in cycles, where each the assimilation cycle has two steps.
Adopting the generally accepted data assimilation terminology unified in [ICGL97], the
first step, the data update, can be described as follows: Given the model forecast (so
called background field) and the observations, the data update produces their statis-
tically optimal combination called analysis . It is an estimate of the current system
state considered to be better both the standalone model forecast and the observations.
Essentially, the analysis step tries to balance the uncertainty in the data and in the
forecast. In the second step, the time update, the analysis is integrated forward in time
using the model equations. This becomes the new forecast in the next assimilation
cycle. Periodic updating of the model with observations should ensure that the model
will not diverge from the physical truth.

Illustration of the sequential data assimilation process is in Figure 1.1: Let the
system state be a one-dimensional continuous random variable estimated in discrete
time steps. Observations available in discrete time steps represent a connection with
the physical reality and can be understood as a noisy samples from the true state
represented by the blue curve. Observations are denoted with squares and the green
circles represent their uncertainty. In each time instance, the best state estimate—
analysis denoted by asterisk—is produced on basis of current model forecast (plus sign)
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and observations. The red and yellow circles represent the uncertainties of forecast and
analysis, respectively. In the figure is schematically depicted that the forecast error is
reduced in each time step after the data update (yellow dashed line). The red dashed
line represents the time update step, when the analysis is advanced via the model
forward in time.

Figure 1.1: Illustration of basic principle of sequential data assimilation.

1.2 Data assimilation in radiation protection
We are concerned with application of data assimilation in the case of a severe radiation
accident, when an accidental release of radionuclides into the environment occurred
and it is likely to require at least partial implementation of countermeasures. The main
objective of data assimilation is to estimate the true scale of the accident and predict
its consequences in order to improve reliability of the decision support through different
phases of the accident.

The time tract of an accidental release of radionuclides can be formally split into
two consecutive phases:
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Early phase begins when the radionuclides are released into the environment. We
focus on atmospheric releases, when the effluent forms a radioactive plume ad-
vected by the wind field and dispersed by turbulent processes. The plume causes
external irradiation from cloudshine and internal irradiation due to inhalation.
Duration of this phase is from a few hours up to several days and let it formally
ends when the plume leaves the area of interest. The main objectives of data
assimilation in the early phase are (i) on-line estimation of radiation situation
and its evolution and (ii) estimation of committed population doses.

Late phase covers latter stages of the accident and immediately follows after the early
phase. After the plume passage, there is no more irradiation due to cloudshine,
however, on the ground remains deposited radioactive material. It causes ex-
ternal irradiation from groundshine and internal irradiation from inhalation due
to resuspension and ingestion. This phase ends when radiation levels resume to
background values. The main objectives of data assimilation in the late phase
are (i) identification of contaminated areas and (ii) estimation of radiation levels
and the speed of the radionuclides removal for purposes of long-term forecasting.
The estimates enter subsequent models of radionuclides propagation through the
different compartments of the environment.

Data assimilation is potentially applicable in both phases, however, different physical
processes, time scales etc., determine specific requirements on assimilation inputs and
target fields of predictions. The key properties of the early and the late phase are
summarized in Table 1.1. Summary of applicability of DA methods reviewed in this
work is in Table. 1.2.

1.2.1 State of the art

1.2.1.1 Assimilation of Lagrangian particle models

Lagrangian particle model is a Monte Carlo dispersion model, where the spreading of
pollutants is simulated using a large number of particles released from the source, each
of them carrying some elemental activity. Trajectories of particles are given by a me-
teorological forecast entering the model. Random perturbations are added to the wind
speed of the particles in order to simulate stochastic turbulent processes in the atmo-
sphere. In this model, the three-dimensional space is divided into partial volumes. At
each time step, movement of all the particles is traced and the activity concentration in
each partial volume is obtained by summing up the activity assigned to particles within
the volume. When a new set of observations is available, the assimilation procedure
is performed as a modification of the number of particles in the partial volumes, e.g.
[ZLLL07]. Between consecutive measurement updates, the redistributed particles are
propagated forward in time by the meteorological forcing.

The advantage of Lagrangian models is their capability to account for many phys-
ical processes in a natural way. Their application in data assimilation allows for local
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Class of methods Requirements: Applicable to:
R1 R2 R3 R4 A1 A2 A3

Function fitting methods x x
Empirical interpolation methods x x x
Constant statistical methods x x x x
Minimization (optimizations) methods x x x
Ensemble filters x x x x x x x
Sequential MC methods x x x x x x x

Table 1.2: Data assimilation methods. Legend: R1 - observations, R2 - background
field, R3 - BF and/or observation error statistics, R4 - numerical model of state evolu-
tion. A1 - intermittent assimilation of spatially (2-D or 3-D) distributed quantity, A2 -
continuous assimilation of spatially distributed quantity, A3 - estimation of dispersion
model parameters (use with parameterized models - inverse modeling).

assimilation of the activity concentrations and thus the results better consider local
variations in terrain, meteorology etc. The disadvantage is the fact, that a large num-
ber of particle trajectories must be computed to simulate a release using this type of
model. Such an assimilation algorithm based on this approach model must be run on
a supercomputer in order to meet the strict time constraints in the early phase.

1.2.1.2 Assimilation of parameterized models

A substantial reduction of the computational complexity can be reached by the use
of a deterministic model parametrized by a set of control variables. The term control
variables refers to a selected subset of inputs to the model and parameters influencing
its result. The set is selected using the uncertainty and sensitivity studies performed
with dispersion models, [EKT07, Rao05, TvTB07]. Given some particular values of
control variables, concentration in air is calculated simply by evaluation of the model
as a deterministic function of the variables. Contrary to Lagrangian particle models,
direct assimilation of concentration values in the grid points is not possible with these
models. Modification of the analytical shape of the plume would forbid its propagation
in the next time step. Data assimilation is then formulated as an optimization of
the control variables in order to reach the best correspondence of model forecast with
available observations. These estimates may in turn re-enter atmospheric dispersion
models, resulting in a greatly improved dose rate assessment. Parameters not included
in the set of control variables are not treated as uncertain but they are initialized with
a fixed value.

The most simple methods for optimization of the control variables are not proba-
bilistic and minimize just a loss function measuring point-wise distance between model
and observations. [EKT07] presented a simple assimilation scheme for tuning of the
effective release height and the wind direction of the Gaussian plume model. This idea
is more developed in [PH08], where a segmented version of the Gaussian plume model



CHAPTER 1. INTRODUCTION 19

[HPP08a] is used and the set of optimized control variables is extended to address their
time variability. The advantage of this method is its simplicity and a potential for
extension of the set of optimized control variables. The disadvantage is the fact that
the method does not consider error statistics of the model and observations, contrary
to variational methods, where the difference between the model forecast and the ob-
servations is weighted with appropriate error statistics. Assimilation schemes based
on variational approach are described in [JKS+05, KTAB09, QSI05]. Here, all the
optimized control variables are treated as time invariant.

More advanced methods are based on sequential data assimilation. [DLM05] de-
scribed extended Kalman filtering of the Gaussian plume. Here, the set of optimized
control variables is restricted to the ratio of the release rate and the wind speed, the wind
direction and the plume height. Similar assimilation scheme is proposed in [ATP+04]
describing assimilation of the RIMPUFF model [TNDM99]. A continuous release is
with the RIMPUFF (RIsø Mesoscale PUFF) model approximated by a sequence of
overlapping puffs. This allows inclusion of complex meteorological and other local
characteristics. Control variables are radioactive inventories of partial puffs and the
wind direction affecting spatial positions of the puffs within the computation domain.
The number of control variables changes dynamically as new puffs are released and
other puffs leave the domain. This assimilation methodology for the early phase is
implemented in the RODOS (Real-time Online Decision Support System for nuclear
emergency management), [PMG+03].

Due to time pressure in the early phase, we will focus our attention to the sequential
version of the Monte Carlo technique, which is also known as the particle filter [GSS93,
DGA00]. It has been shown in [JHN04, HKvD11] that it provides results comparable
to those obtained by the classical Monte Carlo Markov Chain algorithm.

1.2.1.3 Data assimilation in the late phase

The basic aspects of modeling and assimilation in the late phase are formulated in
[GWW+04]. Modeling in the late phase covers a broad range of disciplines focusing on
different problems, e.g., contamination of arable soil and urban areas, contamination of
water resources, propagation of radionuclides in the food chain, etc. In [YKM+05], the
method iterations to optimal solution is applied for assimilation of an aquatic model
with observations of the Black Sea contamination after the Chernobyl accident. The
details regarding this simple empirical interpolation method can be found in [Dal93].

In [Pal05], the ensemble Kalman filtering (EnKF) based data assimilation system
for assimilation of the groundshine measurements with a radio-ecological model is de-
scribed. The system is a part of the RODOS. EnKF introduced by [Eve94] is proposed
here as the most promising approach for data assimilation in the late phase.
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1.2.2 Evaluation of performance

The performance assessment of data assimilation methods is in the field of radiation pro-
tection problematic. The dispersion modeling of radioactive pollutants has its specific
properties and the existing data sets from experiments with non-radioactive pollutants
are not suitable. Since there is a lack of observational data sets from the real reac-
tor accidents, the measurements used for validation of data assimilation methods are
simulated using the twin experiments [EKT07]. It means, that the measurements are
generated using a model of the system under investigation, initialized by some refer-
ence values. Observations are sampled from the model output fields in locations of
the receptor points. From the theoretic point of view, the twin experiments are useful,
because they make possible to evaluate assimilation performance against a known “back-
ground truth” and the convergence can be easily assessed. The method also provides a
transparent tool for controlling of measurement error type and magnitude.



Chapter 2

Physical Models

Before we proceed to description of particular assimilation methods, we briefly introduce
basic physical models needed for modeling of different physical phenomena in the early
and the late phase of a radiation accident. The first part of this chapter is devoted
to atmospheric dispersion modeling and the second part concerns basic radiological
quantities. The focus is paid to development of an observations operator transforming
spatially distributed activity in air into (time integrated) gamma dose rate.

2.1 Atmospheric dispersion modeling
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants
disperse in the ambient atmosphere. Dispersion models are computer codes solving
equations describing the propagation of pollutants given the initial conditions, i.e., the
meteorological conditions (wind speed and direction, precipitation) and the process
conditions (heat capacity of the plume, terrain roughness, etc.) prevailing in the atmo-
spheric boundary layer. Output from such a dispersion model is a 3-dimensional field
of pollutant concentration in air. In the case of radioactive pollutants, the output is
given in terms of activity concentration in air [Bqm�3].

Atmospheric dispersion models are basic tools for decision makers when assessing the
atmospheric radionuclide releases. The models predict concentration of pollutants in the
downwind directions from the source. Combined with the information on demography,
the models can estimate expected exposure of population to ionizing radiation, and
consequently, the health effects in terms of total committed doses. Nowadays, there
exist various approaches to atmospheric dispersion modeling.

2.1.1 From advection to diffusion

In the following text in this chapter, the subscript i iterates over the set {1, 2, 3} de-
noting the three spatial coordinates.

Following [Bar01], let us assume a release of a material into the atmosphere. If no
chemical reactions and molecular diffusion are assumed, the concentration of material,

21
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C, resulting from the release is given by the advection equation
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and C = C(s, ⌧) is a function describing concentration of the pollutant in space and
time. As the actual wind speed is not known and it can not be incorporated into the
equation, we assume that the wind speed at a certain time can be described according
to the scheme

u
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, (2.2)

where u is the mean wind speed during a time period and the second term u0 stands
for a stochastic component, fluctuation of the wind due to the momentary turbulence.
This scheme implies also fluctuation of the concentration

C = C + C 0, (2.3)

where C is the concentration taken over a time period and C 0 is a stochastic fluctuation.
The stochastic fluctuation terms are assumed to have zero mean values

C 0 = 0, u0
i

= 0. (2.4)

Substituting (2.2, 2.3) into (2.1) yields
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where the terms u0
i

C 0 and C 0u0
i

are zero due to (2.4).
To describe the mean stochastic turbulent flux term u0

i

C 0, we introduce the eddy
diffusivity coefficients K

i

. Turbulent diffusion is a diffusion process by which substances
are mixed in the atmosphere or in any fluid system due to eddy motion. As the turbulent
fluxes u0

i

C 0 can be measured only with fast-response instruments and it is difficult
to treat them theoretically by analogy with the molecular case, the turbulent flux is
commonly assumed to be directly proportional to the mean gradient
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i
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where K
i

are diffusivity coefficients in units m2s�1. The negative sign is included so
that the flux is down the gradient, i.e., from the high values of C to the low values.
The mean wind components and the mean concentration represent average values over
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the time scale T
a

and the corresponding spatial scale s
a

. Typical values of T
a

are a few
minutes in magnitude. Fluctuation in smaller scales is assumed to be turbulent and is
included in K

i

. Substituting (2.7) into (2.6) gives
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Expanding the second term on the left side of (2.8) and assuming that the atmosphere
is incompressible,
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the second term on the left side of (2.8) vanishes and we obtain the advection-diffusion
equation
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It describes the relationship between the spatial and the temporal behavior of concen-
tration. When combined with appropriate initial conditions and boundary conditions,
this equation forms the basis for the dispersion modeling and may be solved for var-
ious scenarios. In this equation, both the pollution transport by the advection and
the diffusion due to the atmospheric turbulence are represented. However, (2.9) is not
possible to solve analytically for completely general functional forms for the diffusivity
coefficients K

i

and the wind speed components u
i

.

2.1.2 Classifications of air pollution models

Models vary considerably in their complexity, and may take account of different phys-
ical and chemical processes affecting the flow and transport. Different mathematical
expressions can be derived to represent these atmospheric processes. Consequently,
there is an enormous range of available atmospheric dispersion models. Comprehensive
review of atmospheric dispersion methodology is given, e.g. by [HM06].

2.1.2.1 Box models

This is a simple model, largely based on the concepts of conservation of mass and
conservation of energy. The treatment of transport is simplified, but the model is
capable to include complex chemistry. The model evaluates mass balance of a given
system using the conservation laws, where the particles of pollutant are transferred from
one domain of the environment to another. Inside a domain, the air mass is assumed
to be well mixed and concentration of the pollutant is assumed to be homogeneous.
Boundaries of the domains are boxes. For every pollutant, we can write the mass
balance equation:
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Input rate = Output rate + Transformation rate + Accumulation rate

Depending on the physical and chemical interactions, some of the pollutants may pass
through the system unchanged, some may accumulate within the system, while some
may undergo chemical transformation or radioactive decay.

The simplicity of the model implies that it requires simple meteorological inputs
and simple parametrization of the emission source. As it provides area-wide averages of
concentration for a given region, the box model is a useful tool for screening purposes,
where we need quick answers without any stress on accuracy. However, well-mixed and
homogeneous conditions are sometimes unrealistic and the box models should not be
used to calculate concentration in large areas, where the local changes must be reflected.
For more detailed modeling we need more complex models continuously tracking the
plume through the environment as it is advected by the wind, spread by diffusion,
mixed by turbulence and reflected or channeled by surfaces such as the ground and the
buildings [Bar01].

2.1.2.2 Lagrangian and Eulerian models

Both the Lagrangian and the Eulerian models solve the same advection-diffusion equa-
tion. The difference between Lagrangian and Eulerian approach to modeling consists
in the different treatment of the frame of reference. The Lagrangian approach is based
on studying the property of a particular fluid by following its trajectory. Lagrangian
models are similar to the box models, where the region of air containing an initial
concentration of pollutants is considered as a box [Gur08]. The box is considered to
be advected with the flow and the model follows the trajectory of the box. It is said
that an observer of a Lagrangian model follows along with the plume. The motion of
air parcels is modeled as a superposition of the mean wind speed and a random per-
turbations simulating chaotic nature of the atmosphere. It is a random walk process
indeed. Concentration is in the Lagrangian models evaluated in partial volumes (boxes)
forming a 3-dimensional grid. Average concentration in a given grid cell is evaluated
in a way that we sum up all the elemental concentrations associated with the particles
in the cell. The main advantage of Lagrangian models is the capability to account for
many physical processes in a natural way. They work well both for homogeneous and
stationary conditions over the flat terrain and for inhomogeneous and unstable media
conditions for the complex terrain. Particle dispersion model is an example of practical
implementation of a Lagrangian model [ZLLL07].

In Eulerian modeling, we also track the movement of a hypothetical parcel of air,
but we use a fixed frame of reference. The Eulerian approach is based on studying fluid
property in a control volume at a fixed point in space, that is, the control volume
is stationary and fluid moves through the control volume [Gur08]. It is said that
an observer of an Eulerian model watches the plume go by. Eulerian models use 2-
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dimensional and 3-dimensional grids for solving the differential equations, e.g. (2.9),
where diffusion, transport, and removal of pollutant emission is simulated in each cell.

2.1.2.3 Gaussian models

Gaussian models are widely used in atmospheric dispersion modeling, and are often
“nested” within Lagrangian and Eulerian models. They are based on a Gaussian dis-
tribution of concentration in the plume in vertical and horizontal directions under the
steady state conditions [Zan90, HM06]. Gaussian models are popular, particularly for
the following reasons:

• The Gaussian models represent a solution of (2.9) under some simplifying assump-
tions (e.g., constant wind and eddy diffusivity coefficients) and they are consistent
with the random nature of the turbulence.

• Their simplicity allows for fast evaluation even with small computational re-
sources. This is an essential property when we attempt to employ assimilation
techniques based on Monte Carlo approach, when the model must be repeatedly
run for many times.

• The analytical form of the Gaussian models allows for a good insight and a trans-
parent evaluation of experimental results.

• The Gaussian models are easy to implement and they can be embedded into
various forecasting and assimilation systems.

• Validity of the Gaussian models was satisfactorily verified for different meteoro-
logical conditions via comparison to the results of field tests with tracer releases,
when the agreement of measured and modeled concentration was assessed, e.g.
[CEE+95].

Gaussian models are not designed to model dispersion under low wind conditions or at
sites close to the source, i.e., at distances closer than 100m. It was found that these
models over-predict concentrations in low wind conditions [HBHJ82].

Gaussian models—in their basic form—assume just the diffusion and advection of
the pollutants. Modified versions of the Gaussian models are capable to include physical
processes such as dry and wet deposition and radioactive decay [HPP08a]. We can
distinguish two main variants of the Gaussian models. The Gaussian plume model
assumes a continuous release when a plume in the downwind direction is formed under
stationary conditions. The Gaussian puff model assumes a sudden instantaneous release
when an expanding puff is formed.

2.1.2.4 Computational fluid dynamics models

Computational fluid dynamics models are able to deal with the fluid flux in a complex
geometry by solving the Navier-Stokes equation and the continuity equation when the
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Figure 2.1: Illustration of the Gaussian plume model.

flow is idealized as a laminar flow [Gur08]. These two equations can be solved simul-
taneously using finite difference or finite volume methods. If the flow is turbulent, the
Reynolds Navier-Stokes equation with the continuity and turbulence closure models is
used for this case [TL72].

2.1.2.5 Summary

In this work, we focus on parametrized Gaussian models which are discussed in more
detail in the following section.

2.1.3 Gaussian models

To simplify the notion, we omit the over-bars denoting the average values of C and u
i

in the following text.

2.1.3.1 Gaussian plume model

Gaussian plume model is obtained as a 3-dimensional, time independent solution of
(2.9) for a continuous source at the ground level, constant u

i

and K
i

, and a flat terrain.
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Gaussian plume models gives us a steady-state solution, i.e., the model does not take
into account the time required for the pollutant to travel to the receptor and describes
concentration in a fully established plume under stationary meteorological conditions.

Let us assume a continuous point-source ground-based release of mass Q with time
constant coefficients K

i

and wind speed components u
i

. The wind is assumed to blow
along the direction of s

1

-axis (u = (u
1

, 0, 0)) of an Eulerian coordinate system with the
origin aligned with the source location. We can assume that the advection dominates
diffusion in the downwind direction,

u
1

@C

@s
1

>>
@

@s
1

✓
K

1

@C

@s
1

◆
.

The diffusion in this direction can be then neglected and the basic equation (2.9) mod-
ified for the steady-state conditions is
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The boundary conditions for solution of (2.10) are:

1. C ! 0 for r =
p

s2
1

+ s2
2

+ s2
3

! +1,

2. C ! +1 for r ! 0,

3. K
3

@C

@s

3

! 0 for s
3

! 0,

4.
´

+1
0

´
+1
�1 u

1

C ds
2

ds
3

= Q.

Here, Q defines a continuous point-source in terms of released mass per time (activity
per time in the case of a radioactive release). The first two conditions represent our
requirements on the concentration values at zero and infinite distances from the source.
Condition 3 expresses the fact that we assume no sedimentation on the ground and
condition 4 is the formalization of the law of conservation of the released mass (activity).
The appropriate solution for constant wind and diffusivity coefficients is

C(s) =
Q

4⇡s
1

p
K

2

K
3

exp


� u

1

4s
1

✓
s2
2

K
2

+
s2
3

K
3

◆�
. (2.11)

Since the values of diffusion coefficients is difficult to measure, we use dispersion coef-
ficients defined as

�
i

=
p

2K
i

⌧ . (2.12)

The dispersion coefficients are usually functions of the atmospheric stability category
and the downwind distance from the source. Substitution of (2.12) into (2.11) gives us
a time independent formula for concentration in a developed Gaussian plume

C(s) =
Q
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. (2.13)
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The coefficients �
2

and �
3

represent the standard deviations of the concentration in the
cross-wind (s

2

) and vertical (s
3

) planes, respectively. Larger values of the coefficients
mean broader distribution and consequently higher dilution of pollutant and smaller
concentration.

2.1.3.2 Gaussian puff model

Contrary to the plume models, the puff models are applicable when mean wind vector
transporting the puff is variable in space and time. Using the puff model, these vari-
ations can be directly incorporated in a numerical scheme whereby they are used to
transport the center of the puff. Dispersion of the puff (Gaussian distribution) is evalu-
ated using the concept of virtual source at each time step. The characteristic feature of
these models is that the calculation of pollutant diffusion, transportation, and removal
is performed in the Lagrangian frame of reference attached to a number of parcels as
they are transported around the geographical region of interest. Approximation of a
continuous release is reached by simultaneous propagation of multiple puffs. Under
assumption of stationarity, spatially homogeneous flow of multiple puffs over the flat
terrain represents the Gaussian plume model, which is demonstrated in [JPP03]. The
overall concentration is evaluated as a superposition of the puffs [LGR77, Zan86].

The form of (2.9) describing advection and diffusion of a single puff is
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We solve (2.14) with the following boundary conditions:

1. C ! 0 for r =
p

s2
1

+ s2
2

+ s2
3

! +1,

2. C ! +1 for r ! 0,

3. K
3
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! 0,
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ds
3

= Qi.

Here, Qi defines an instantaneous point-source in terms of released mass (activity in
the case of a radioactive release). Analytical solution for the given case describing the
concentration of pollutant everywhere in space is

C(s, ⌧) =
Qi
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After substitution of dispersion coefficients �
i

for the eddy diffusivity coefficients K
i

we obtain equation of the Gaussian puff. Under general conditions, a puff located in
sP = (sP

1,

sP
2

, sP
3

) in time ⌧ generates the concentration field
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(2.16)
at a receptor located at sR = (sR

1

, sR
2

, sR
3

). Similarly to the plume model, coefficients
�
1

, �
2

and �
3

represent the standard deviations of the concentration in the downwind
(s

1

), cross-wind (s
2

), and vertical (s
3

) planes, respectively.

2.1.3.3 Parametrization of dispersion coefficients

Variability of temperature with altitude influences the turbulence characteristics and
thus the dispersion of pollutants. The temperature in the atmosphere is governed
by incident solar radiation, prevailing wind velocity, and percentage of cloud cover.
Depending on the magnitude of these parameters, [Pas61] introduced the six stability
classes named A, B, C, D, E, and F of the atmospheric turbulence. Class A denotes
the most unstable or most turbulent conditions (the dispersion is higher), and class F
the most stable or the least turbulent class (very low dispersion).

Besides the atmospheric stability category, dispersion coefficients are also dependent
on travel time from the source and the type of terrain (urban, rural, etc.), e.g. [Gif76].
The comprehensive review can be found in [HBHJ82]. More advanced models apply
Monin-Obukhov similarity theory and use the surface roughness length and the Monin-
Obukhov length to determine the magnitude of dispersion, see [Che02, CPV+04].

2.1.3.4 Elevated sources and reflections

The last exponential terms in (2.16) and (2.13) stand for exponential concentration
profiles in the vertical direction. Let the terms be denoted as V ,

V = exp


� s2

3

2�2

3

�
. (2.17)

In the most of real situations we assume, that the source is elevated over terrain in a
height H. Moreover, if the effluent has a heat capacity or an initial vertical momentum,
the height of the plume reaches so called effective height H

ef

. It is a sum of the release
height H and the height change due to the plume rise or subsidence �H,

H
ef

= H +�H.

Vertical dispersion is usually assumed to be a growing function of the downwind
distance, �

3

= �
3

(r). The form of (2.17) suggests that the vertical expansion of a puff
or plume can be infinite. This is, of course, not possible in reality . The Gaussian
distribution of the concentration is modified at greater distances from the source due
to the effects of turbulent reflections from the surface. When the pollutant reaches the
ground due to the vertical dispersion, the further spreading in vertical direction is not
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possible and it is assumed that at the surface is the pollutant reflected without any
loss. Reflection on the ground is modeled as a virtual source at the effective height
H

ef

below the ground. To account for the elevated source and the ground reflection we
modify the vertical dispersion term as follows,

V
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= exp
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3
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�
.

Puff or plume can be also reflected from the top of mixing layer. In such a case, the
vertical profile of the plume is bounded by the ground and the top of mixing layer at
height H

mix

. Theoretically, the number of reflections can be infinite. However, multiple
reflections on the ground and at the top of mixing layer lead to vertical homogenization
of concentration and numerical experiments proved that one virtual source below ground
and one at the top of the boundary layer gives sufficient accuracy [Bar01],
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The principle used for modeling of the reflections as a superposition of multiple plumes
released from virtual sources is illustrated in Figure 2.2.
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Figure 2.2: Illustration of the principle used for modeling of the reflections as a super-
position of multiple plumes released from virtual sources below the ground and above
the top of mixing layer .

2.2 Radiological quantities
In this section we briefly describe some essential radiological quantities used in this
work and their relations.

2.2.1 Radioactive decay and radioactivity

Radioactive decay is a spontaneous nuclear transformation followed by an emission of
ionizing particles. As the decay of an unstable nucleus is entirely random and it is
not possible to predict when a particular atom will decay, it is described in terms of a
continuous quantity N(⌧), mean value of radioactive (undecayed) atoms in time ⌧ .

Given a sample of a particular radioisotope, the number of decay events (�dN(⌧))
expected to occur in a small interval of time dt is proportional to the number of atoms
present:

� dN(⌧)

d⌧
= �N(⌧). (2.19)

The negative sign indicates that the mean value of radioactive atoms N(⌧) decreases
with each decay event and � is the proportionality constant known as the decay constant.
Particular radionuclides decay at different rates, each having its own � (there are more
than 500 different nuclides). Solution of the first order differential equation (2.19) is a
function
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N(⌧) = N
0

exp(�� ⌧), (2.20)
where N

0

is the number of radioactive atoms in time t = 0.
The decay rate is denoted as activity, A(⌧), which is a basic physical unit quan-

titatively describing physical phenomena radioactivity. Activity is a measure of the
expected number of disintegrations per unit time [CLR02],

A(t) = �dN(⌧)

d⌧
.

Since A(⌧) is proportional to the mean number of atoms N(⌧), we can write

A(⌧) = A
0

exp(�� ⌧), (2.21)
where A

0

, analogously to N
0

, is the activity in time ⌧ = 0. Although the radioactive
decay is a discrete random process, the continuous exponential functions (2.20) and
(2.21) are for large numbers of atoms (comparable to Avogadro’s number in magnitude)
a good approximation.

Mean lifetime ⌧m of an atom before it undergoes the decay is inversely proportional
to �,

⌧m =
1

�
.

Even more common is the use of physical half-life, T
1/2

, which is the time needed to
reduce the amount of radioactive material by a factor of 2. The formula

N(⌧)

N
0

=
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2
= exp(��T
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)
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T
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=
ln 2

�
. (2.22)

Introducing the physical half-life (2.22) into (2.21), we get the decay law

A(⌧) = A
0

exp

✓
� ln 2
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T
1/2

◆
. (2.23)

The SI unit for radioactivity is Becquerel (Bq) and the activity is given in reciprocal
seconds, s�1,

1 Becquerel (Bq) = 1 (disintegration) s�1.

In the field of dispersion modeling of radionuclides, we evaluate activity concentra-
tion in air , which is a number of disintegration of a dispersed radionuclide in a unit
volume per unit time, i.e., its unit is Bqm�3. It is a quantity of particular importance
because it can be used for evaluation other radiological quantities like deposition and
doses.



CHAPTER 2. PHYSICAL MODELS 33

2.2.2 Calculation of absorbed doses

The absorbed dose (also known as the total ionizing dose) is a measure of the energy
deposited in a medium by ionizing radiation. It is equal to the energy deposited per
unit mass of medium. Its unit J kg�1 was given the special name Gray (Gy).

2.2.2.1 Absorbed dose from cloudshine

The cloudshine is external gamma radiation from a radioactive plume passing over the
terrain. The simplest way of cloudshine dose rate calculation is based on approximation
of the plume as a semi-infinite hemisphere with homogeneous concentration of radionu-
clides [RAC01, TNDL95]. Resulting formula for the gamma dose rate at a receptor R
located at sR = (sR

1

, sR
2

, sR
3

) is

D
c

(sR, ⌧) = K
E C(s, ⌧)

2⇢
, (2.24)

where s = (s
1

, s
2

, s
3

) is a spatial location; K is the dose rate conversion factor [Gy kg eV ];
E is the gamma energy produced by decay of assumed radionuclide; C(s, ⌧) is radionu-
clide concentration [Bqm�3] in spatial location s; and ⇢ is the air density. This formula
assumes an equilibrium between the gamma energy released in the plume and that ab-
sorbed in the air. Approximation of a non-homogeneous plume (e.g. Gaussian) using
the semi-infinite approach may lead to large errors. What is more, if the receptor point
in not immersed in the radioactive cloud, the application of (2.24) is not well-founded
at all.

The general expression for the effective flux of gamma rays at a receptor point sR

from a source of ionizing radiation dispersed in air is according to [TNDL95], as follows,

�(sR, ⌧, E) =

ˆ
⌦

f(E)C(s, ⌧)B(E, µr) exp(�µr)

4⇡r2
ds, (2.25)

where f(E) is the branching ratio to the specific energy E; B is the build up factor; µ is
the linear attenuation coefficient; ⌦ is a spatial domain of integration; and r = ||sR�s||
is the distance of spatial locations sR and s. The build-up factor can be calculated from
Berger’s analytical formula

B(E, µ r) = 1 + a µr exp(b µr),

where coefficients µ, a and b depend on E. Energy dependent absorption coefficient µ
a

is calculated using

µ
a

=
µ

1 + a

(1�b)

2

.

The gamma dose rate from a mixture of nuclides emitting gamma radiation on different
energy levels Ei, i = 1, . . . , N

E

, is
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D
c
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.

For a plume of a mono-energetic radionuclide dispersed in air emitting gamma radiation
on a single energy level E, i.e. f(E) = 1, we obtain
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The time integrated gamma dose rate D
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In the case of Gaussian models, concentration C(s) is given by the analytical for-
mulas (2.16) and (2.13). Specifically, the simplicity of the Gaussian puff model (2.16)
allows for numerical evaluation of the integral in (2.26) on a compact support where
the activity concentration is not negligible.

2.2.2.2 Absorbed dose from groundshine

The groundshine is the external gamma radiation from radioactive material deposited
on the ground, trees, buildings etc. [GBEJ99]. Given deposition SD(s, ⌧) in location s
and time ⌧ , the groundshine dose rate D

g

(s, ⌧) is calculated as follows,

D
g

(s, ⌧) = DF
g

SD(s, ⌧)SF, (2.28)

where the coefficient of proportionality DF
g

is the radionuclide-dependent integrated
dose rate conversion factor for groundshine in units Sv s�1 perBqm�2. Unit-less shield-
ing factor SF is defined as

SF =
X

i

f
i

SF
i

,

where f
i

is ith fraction of time spent in different places (indoor, outdoor, etc.) and
SF

i

2 [0, 1] is the shielding factor at each place.
The time evolution of the deposition is modeled according to the standard formula

SD(s, ⌧) = SD(s, 0)f
R

(⌧)f
E

(⌧), (2.29)

where SD(s, 0) is initial deposition in time ⌧ = 0; f
R

(⌧) is a function taking into
account radioactive decay (2.23) in terms on relative amount of undecayed material
in time ⌧ ; and f

E

(⌧) a function taking into account decrease of radioactivity due to
the environmental removal processes. Environmental removal is a general term refer-
ring to different processes causing radioactivity removal from terrain, e.g., radionuclide
migration deeper into the soil, weathering, leaching.
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An adequate description of the long term dynamics of radionuclides in soil is the
most important factor in the correct estimation of the radioactive contamination of local
agricultural and forest products, which has a major contribution to the exposure of the
local population. There exist several computer codes implementing formulas (2.28) and
(2.29). Their comprehensive review can be found in [TSA+05]. In calculation of the
groundshine dose, the main difference among the codes consists in different descriptions
of f

E

(⌧) and in application of different numerical values of SF and DF
g

[IAE03].
We adopt groundshine dose model from Japanese code OSCAAR (Off-Site Conse-

quence Analysis Code for Atmospheric Releases in reactor accidents) [Hom02]. Envi-
ronmental removal is in (2.29) modeled using

f
E

(t) = df exp

✓
� ln 2

t

T f

◆
+ ds exp

✓
� ln 2

t

T s

◆
, (2.30)

where the rate of environmental decay is modeled as a superposition of two exponentials,
fast and slow components with fractions df , ds > 0; df + ds = 1, and removal half-times
T f , T s.

Illustration of the relative decrease of goudnshine dose from deposition of 134Cs
in time due to the radioactive decay and the environmental removal is in Figure 2.3.
Radionuclide 134Cs has the half-life of radioactive decay T

1/2

= 2.0648 years. We see,
that after 24 months, the exponential function describing the radioactive decay (green
line) falls approximately to 0.5 of the initial value. The blue line represents the total
134Cs removal due to the environmental removal (red line) and the radioactive decay.
Values of coefficients in (2.30) were set to some reference values.
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Figure 2.3: Illustration of the relative decrease of groundshine dose from deposition of
134Cs in time due to the radioactive decay and the environmental removal.



Chapter 3

Function Fitting Methods

Principle of this class of methods is based on assumption, that the analysis can be
expanded into a finite series of ordered mathematical basis functions with unknown ex-
pansion coefficients [Dal93]. This series is evaluated at the observation locations and a
cost function measuring the distance between the observed values and the values given
by the series is minimized. The common choice of the cost function is the squared
distance between observations and the background field. Under this choice the data
assimilation problem results in a linear relation for the unknown expansion coefficients,
which can be determined upon solution of a systems of linear equations. The spa-
tial analysis obtained is then obtained by evaluating the series at the set of analysis
gridpoints forming an analysis grid.

Interpolation is the problem of approximating the value for a non-given point in
some space when given some colors of points around (neighboring) that point.

3.1 Nearest-neighbor interpolation
Nearest-neighbor interpolation (also known as proximal interpolation, Zero-order in-
terpolation or, in some contexts, point sampling) is a simple method of multivariate
interpolation in one or more dimensions. The nearest neighbor algorithm selects the
value of the nearest point and does not consider the values of neighboring points at all,
yielding a piecewise-constant interpolant. The algorithm is very simple to implement
and is commonly used (usually along with mipmapping) in real-time 3D rendering to
select color values for a textured surface.

3.2 Bilinear interpolation
Bilinear interpolation is an extension of linear interpolation for interpolating functions
of two variables (e.g., x and y) on a regular grid. Let f = f(x, y) be a two-dimensional
function known on a rectangular regular grid. Let’s assume, that we want to find a value
of f(x, y) in an arbitrary point P = (x

P

, y
P

). Let the grid points Q
1

= (x
1

, y
1

), Q
2

=

37
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Figure 3.1: Illustration of principle of bilinear interpolation.

(x
2

, y
2

), Q
3

= (x
3

, y
3

), Q
4

= (x
4

, y
4

) be the points representing the grid-cell containing
P , see Fig. 3.1.

The key idea is to perform linear interpolation first in one direction, and then again
in the other direction. Although each step is linear in the sampled values and in the
position, the interpolation as a whole is not linear but rather quadratic in the sample
location:
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), the approximation (estimate) of f(P ) is
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The general expression for bilinear interpolation formula according to scheme in Fig.
3.1 is as follows:
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If we choose a coordinate system, in which the four points where f is known, are
(0, 0), (0, 1), (1, 0), and (1, 1), i.e., the function is known on a unit square, then the
interpolation formula simplifies to
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Figure 3.2: Illustration of principle of bilinear interpolation.

f(x, y) ⇡ f(0, 0)(1� x)(1� y) + f(1, 0)x(1� y) + f(0, 1)(1� x)y + f(1, 1)xy.

Or equivalently, in matrix form

f(x, y) ⇡ ⇥1� x x
⇤ f(0, 0) f(0, 1)

f(1, 0) f(1, 1)

� 
1� y
y

�
.

3.3 Local polynomial fitting
Local polynomial fitting is another simple technique for spatial analysis. Contrary to
the bilinear interpolation, polynomial fitting uses polynomial functions of a given order
for approximation of an analyzed quantity given gridded values. Similarly to the bilinear
interpolation, it is a local technique exploiting the data points close to the analyzed
point. Since we are concerned with spatial analysis, the meaning of distance has the
physical meaning of the real distance of two spatial locations in the Euclidean sense.

The principle is illustrated in Fig. 3.2. There are 16 analysis points in the figure -
the points, where the value of an analyzed quantity is to be estimated. Coordinates of
each of points are denoted with a vector r

i

2 R2, i = 1, . . . ,16. Around each point is
drawn a circle called the radius of influence, R

i

, and the area circumscribed is called
the region of influence [Dal93]. The span of area of influence R

i

determines the number
of observations that influence the interpolated value of point r

i

. In other words, we
assume that the analysis is at the point r

i

is influenced by all the observations that lie
within the region of influence of a particular gridpoint.
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Following [Dal93], consider the spatial analysis of a function f : R2 ! R. Define the
local coordinate system (x, y) at the ith point such that x = 0, y = 0 at the gridpoint
itself. Let the observation f

o

(x
k

, y
k

) fall into are of influence of the ith gridpoint, i.e.,
x2

k

+ y2
k

 R2

i

, let the number of observations be K
i

.
Define the analyzed quantity f within the ith region of influence as f

a

(x, y) and
that it can be represented by a two-dimensional polynomial expansion of the form

f
a

(x, y) =
X

m

X

n

c
mn

xmyn, (m+ n  M), (m,n � 0), (3.1)

where the c
mn

are the real expansion coefficients. The task is to determinate these
coefficients using available observation f

o

(x
k

, y
k

), k = 1, . . . , K
i

. Given the coefficients,
we can use the formula (3.1) to estimate value of f

a

in an arbitrary location (x, y)
within the region of influence, e.g. at the analysis gridpoint. Note that at the analysis
gridpoint itself x = y = 0 and f

a

(0, 0) = c
00

. Form the following quadratic expression

I =
1

2

K

iX

k=1

X

m

X

n

c
mn

xmyn � f
o

(x
k

, y
k

)

�
2

by formal evaluation f
a

(x, y) at each of the observation stations in the ith region of
influence. I in (3.2) is minimized by differentiating it with respect to each of the
coefficients c

mn

in turn and setting the results equal to zero:

@I

@c
mn

=
K

iX

k=1

xm

k

xn

k

X

µ

X

⌫

c
µ⌫

xµ

k

y⌫
k

� f
o

(x
k

, y
k

)

�
= 0, (3.2)

yielding

X

µ

X

⌫

c
µ⌫

K

iX

k=1

xm+µ

k

yn+⌫
k

=
K

iX

k=1

xm

k

yn
k

f
0

(x
k

, y
k

), (µ+ ⌫  M)

for all m+ n  M . µ and ⌫ are iteration indices.

3.3.1 Cubic interpolation

Cubic interpolation is a special case of local polynomial fitting where we use all the
polynomial terms up to order of 3. For sake o clarity, suppose that we want to inter-
polate on a unit square, where the function f

o

and its derivatives fx

o

= �f

o

�x

, f y

o

= �f

o

�x

,
fx,y

o

= �

2

f

o

�x�y

are known in corners (0, 0), (0, 1), (1, 0), and (1, 1). The interpolated surface
can be then expressed using

f
a

(x, y) =
3X

m=0

3X

n=0

c
mn

xmyn
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for all (x, y) 2 h0, 1i ⇥ h0, 1i. The interpolation problem consists in determining 16
coefficients c

mn

. Matching f
a

(x, y) with the function values yields four equations:

f
o

(0, 0) = f
a

(0, 0) = c
00,

f
o

(1, 0) = f
a

(1, 0) = c
00

+ c
10

+ c
20

+ c
30

,

f
o

(0, 1) = f
a

(0, 1) = c
00

+ c
01

+ c
02

+ c
03

,

f
o

(1, 1) = f
a

(1, 1) =
3X

m=0

3X

n=0

c
mn

.

Likewise, eight equations for the derivatives in the x-direction and the y-direction:

fx

o

(0, 0) = fx

a

(0, 0) = c
10

,

fx

o

(1, 0) = fx

a

(1, 0) = c
10

+ 2c
20

+ 3c
30

,

fx

o

(0, 1) = fx

a

(0, 1) = c
10

+ c
11

+ c
12

+ c
13

,

fx

o

(1, 1) = fx

a

(1, 1) =
3X

m=1

3X

n=0

c
mn

m.

,

f y

o

(0, 0) = f y

a

(0, 0) = c
01

,

f y

o

(1, 0) = f y

a

(1, 0) = c
01

+ c
11

+ c
21

+ c
31

,

f y

o

(0, 1) = f y

a

(0, 1) = c
01

+ 2c
02

+ c
03

,

f y

o

(1, 1) = f y

a

(1, 1) =
3X

m=0

3X

n=1

c
mn

n.

And four equations for the cross derivatives xy:

fxy

o

(0, 0) = fxy

a

(0, 0) = c
11

,

fxy

o

(1, 0) = fxy

a

(1, 0) = c
11

+ 2c
21

+ 3c
31,

fxy

o

(0, 1) = fxy

a

(0, 1) = c
11

+ 2c
12

+ 3c
13

,

fxy

o

(1, 1) = fxy

a

(1, 1) =
3X

m=1

3X

n=1

c
mn

mn.

The derivatives fx

a

, f y

a

, and fxy

a

in the expressions above are as follows:
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fx

a

(x, y) =
3X

m=1

3X

n=0

c
mn

mxm�1yn,

f y

a

(x, y) =
3X

m=0

3X

n=1

c
mn

xinyn�1,

fxy

a

(x, y) =
3X

m=1

3X

n=1

c
mn

mxi�1nyn�1.

This procedure yields a surface f
a

(x, y) on the unit square which is continuous and
with continuous derivatives. Bicubic interpolation on an arbitrarily sized regular grid
can then be accomplished by patching together such bicubic surfaces, ensuring that the
derivatives match on the boundaries. If the derivatives are unknown, they are typically
approximated from the function values at points neighboring the corners of the unit
square, e.g. using finite differences. Grouping the unknown parameters c

mn

in a vector,

c = [c
00

, c
10

, c
20

, c
30

, c
01

, c
11

, c
21

, c
31

, c
02

, c
12

, c
22

, c
32

, c
03

, c
13

, c
23

, c
33

]T,

and

b = [ f
a

(0,0) f

a

(1,0) f

a

(0,1) f

a

(1,1) f

x

a

(0,0) f

x

a

(1,0) f

x

a

(0,1) f

x

a

(1,1) f

y

a

(0,0) f

y

a

(1,0) f

y

a

(0,1) f

y

a

(1,1) f

xy

a

(0,0) f

xy

a

(1,0) f

xy

a

(0,1) f

xy

a

(1,1) ] T,

the problem can be reformulated into a system of linear equations Ac = b where the
inversion of A is:

A�1 =

2

66666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

�3 3 0 0 �2 �1 0 0 0 0 0 0 0 0 0 0

2 �2 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 �3 3 0 0 �2 �1 0 0

0 0 0 0 0 0 0 0 2 �2 0 0 1 1 0 0

�3 0 3 0 0 0 0 0 �2 0 �1 0 0 0 0 0

0 0 0 0 �3 0 3 0 0 0 0 0 �2 0 �1 0

9 �9 �9 9 6 3 �6 �3 6 �6 3 �3 4 2 2 1

�6 6 6 �6 �3 �3 3 3 �4 4 �2 2 �2 �2 �1 �1

2 0 �2 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 2 0 �2 0 0 0 0 0 1 0 1 0

�6 6 6 �6 �4 �2 4 2 �3 3 �3 3 �2 �1 �2 �1

4 �4 �4 4 2 2 �2 �2 2 �2 2 �2 1 1 1 1

3

77777777775

.

3.4 Numerical examples - comparison of techniques
for spatial interpolation
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Figure 3.3: Interpolation results achieved with different interpolation methods. Top-
left: the true deposition on terrain. Observations are sampled in locations delimited by
red crosses. Interpolation results: Top-right: nearest neighbor; Bottom-left: bilinear
interpolation; Bottom-right: bicubic interpolation.



Chapter 4

Empirical Interpolation Methods

Contrary to the function fitting methods relying only on observations, empirical in-
terpolation methods use so called background filed, or first guess - a prior estimate of
the analyzed quantity given by a mathematical model. In empirical interpolation, the
background field is corrected using available observations. This class of methods thus
represents the simplest inference methods merging multiple sources of information.

In case of a single observation, the basic principle of this class of methods can be
expressed using formula

x
a

= x
b

+W (y � x
b

), (4.1)

where x
b

is a forecast given by model - the background field, x
a

the improved estimate
- the analysis, W is an empirical weight and the term x

b

� y stands for the difference
between model forecast and observed value - residuum. The difference between em-
pirical interpolation methods is in the choice of W which determines how much the
disagreement between the model and the observation influences the model.

In case of multiple observations and analysis on a grid, the principle is illustrated in
Fig. 4.1. The analyzed point (a point from a polar network in this case) is denoted with
the bold cross. The gray circle with radius R represent the area of influence. We assume
that the analysis point is influenced with all the observations (denoted with plus-signs)
in the area of influence. We process all the observation in a batch, the update equation
(4.1) then becomes

x
a

= x
b

+
KX

k=1

W
k

(y
k

� x
b

),

where y
k

is kth observation in area of influence corresponding to the analyzed point.
Empirical interpolation methods can be run in an assimilation cycle, where the anal-

ysis is gradually improved using a series of observations. Unser this iteration procedure
the analysis x

a

becomes the background for the next step:

44
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Figure 4.1: Illustration of principle of empirical interpolation methods.

xa

t+1

= xb

t

+
KX

k=1

W
k,t

(y
k,t

� xb

t

),

where t is the iteration index (time index) and y
t

is the observation corresponding to
time t.

4.1 Cressman analysis
George Cressman developed the Cressman interpolation technique in 1959 [Coo92]. The
technique interpolates station data to a user-defined latitude-longitude grid. Multiple
passes are made through the grid at consecutively smaller radii of influence to increase
precision. The radius of influence is defined as the maximum radius from a grid point
to a station by which the observed station value may be weighted to estimate the value
at the grid point. Stations beyond the radius of influence have no bearing on a grid
point value. At each pass, a new value is calculated for each grid point based on its
correction factor. This correction factor is determined by analyzing each station within
the radius of influence. For each such station, an error is defined as the difference
between the station value and a value arrived by interpolation from the grid to that
station. A distance-weighted formula (shown below) is then applied to all such errors
within the radius of influence of the grid point to arrive at a correction value for that
grid point. The correction factors are applied to all grid points before the next pass
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Figure 4.2: Weighting function of the Cressman analysis (R=1).

is made. Observations nearest the grid point carry the most weight. As the distance
increases, the observations carry less weight. The Cressman function calculates the
weights as follows:

W
k

=
R2 � r2

k

R2 + r2
, r2  R2, (4.2)

W
k

= 0, r2
k

> R2, (4.3)

where R is the radius of influence and r
k

is the distance between the observations
location and the analyzed gridpoint.

As the radius of influence is tightened, results become more representative of the
observed data. The analysis value at each gridpoint is calculated as the analysis value
from the previous pass added to the sum of the products of the calculated weights and
the difference between the actual station value and the interpolated background value
at the station, divided by the sum of the weights.

Advantages:

• Simple and computationally fast (speed depends upon the number of scans).

• Generally more accurate than other simple methods such as linear interpolation.

Disadvantages:

• Can be unstable if grid density is higher than station density (i.e., more grid
points than station data points).



CHAPTER 4. EMPIRICAL INTERPOLATION METHODS 47

• Sensitive to observational errors (random observation errors can generate unphys-
ical features in analysis).

• Analysis may produce unrealistic extrema in the grid values, especially near the
edges of the spatial domain.

• Does not account for the distribution of observations relative to each other.

• Consistency of the result with observations varies with observation (station) den-
sity.

• Optimum radii of influence have to be determined by trial and error.

4.2 Successive corrections methods (SCM)
SCM is a variant of Cressman analysis developed by Bergthorsson and Doos (1955) in
Sweden. SCM is run in iterations, so it can be considered as a 4D data assimilation
methods. Following [Kal03],iIn SCM assimilation cycle, the first estimate of the gridded
field is given by the background field, xa

0

= xb

0

. After the first estimate, the following
iterations are obtained by “successive corrections”

xa

t+1

= xb

t

+

P
K

k=1

w
k,t

(y
k,t

� xb

t

)
P

K

k=1

w
k,t

+ ✏2
,

where y
k,t

is kth observation in the area of influence of the analyzed gridpoint in iteration
t. This update is applied to all the analysis gridpoints in each iteration. The weights
w

k,t

can be defined in different ways, e.g. using the Cressman’s weights (4.2)(4.3).
Different form of weight function proposed by Sasaki (1958) [Sas58] is

w
k

= exp

✓�r2
k

2R2

◆
.

In Fig. 4.3 we see that the weight falls to zero at some finite distance.
The radius of influence is allowed to vary with the iteration.
Although the SCM method is empirical, it is simple and economical, and it provides

reasonable analyses. More details on SCM including derivation of its properties can be
found in [Dal93].

4.2.1 Numerical example

We apply the SCM to on-step correction of a forecast of time integrated activity of I-131
with observations. TIC of I-131 is predicted on a polar network surrounding the source
o pollution. Linear interpolation of TIC predicted in gridpoints of the polar network is
in Fig. 4.4. Analysis is performed only on its subset denoted with the trapezoid.
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Figure 4.3: Weighting function proposed by Sasaki (1958) (R=0.2).

Figure 4.4: Linear interpolation of TIC predicted in gridpoints of the polar network.



CHAPTER 4. EMPIRICAL INTERPOLATION METHODS 49

Figure 4.5: Background field (left) and the true spatial distribution of TIC used for
simulation of observations (right).

In Fig. 4.5 we see the background field given on a polar network and the twin model
representing the true spatial distribution of TIC.

Firstly, we illustrate the effect of choice of the radius of influence. In Fig. 4.6
we see assimilation result (analysis) using three observations after one step of SCM
with different value of radius of influence: R=1, 3, 5, 10, 15 and 20 km. Observation
locations are denoted with red dots. We see that the fact that all the observations are
located in one place caused that the assimilation result differs from the twin model.

Secondly, we show that with more observations regularly covering the analyzed area
we can achieve the good agreement of the analysis and the twin model. The result for
radius of inference r=3km is in Fig. 4.7.

We observe, that for appropriate choice of radius of influence can SCM deliver good
results, however the value of r is usually not known and must be experimentally tuned.
This implies that SCM is not suitable for operational application regarding decision
support in case of accident in a nuclear power plant.
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Figure 4.6: SCM: Illustration of choice of radius of influence. From left to right, top to
down: R=1, 3, 5, 10, 15 and 20 km. Observation locations are denoted with red dots.
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Figure 4.7: Illustration of SCM with more observations. From left to right: background
field, twin model, assimilation result after one step of SCM with R=3km.



Chapter 5

Constant statistical methods

This class of methods comes out from the least squares, which was in environmental
analysis (meteorology) popularized by Lev Gandin. Methods minimize the analysis
variance—expected value of square of difference between analysis and the true value.
Since this class of methods accounts for error statistics of the background field and
the observations, the methods can be considered as statistical, however, we call them
constant because the error statistics are not evolved in time using model equations.

5.1 Scalar least squares (LS) method
Following [Kal03], we illustrate the method on a one-dimensional example. This exam-
ple will serve as an introduction to statistical estimation.

Let T
1

and T
2

be two independent observations of a scalar quantity T . Both the
observations have errors ✏

1

and ✏
2

, respectively. Let operator E[·] denote the operator
of expected value. We assume that our measuring instrument is unbiased, i.e.

E[T � T
1

] = E[✏
1

] = 0,

E[T � T
2

] = E[✏
2

] = 0.

Let the variances of out observations be:

E[✏2
1

] = �2

1

, E[✏2
2

] = �2

2

,

and let the errors by uncorellated, ii.e.,

E[✏
1

✏
2

] = 0.

We assume that the true value of T can be estimated as a linear combination of T
1

and T
2

:

T
a

= a
1

T
1

+ a
2

T
2

.

52
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Since we want the analysis T
a

to be unbiased, i.e. E[T
a

] = E[T ], the coefficients a
1

and
a
2

must fulfill the condition

a
1

+ a
2

= 1. (5.1)

The best estimate T
a

of T minimizes the variance of T
a

given by:

�2

a

= E[(T
a

� T )2]

= E[(a
1

T
1

+ a
2

T
2

� (a
1

+ a
2

)T )2]

= E[a2
1

(T
1

� T )2 + 2a
1

a
2

(T
1

� T )(T
2

� T ) + a2
2

(T
2

� T )2]

= E[a2
1

✏2
1

+ 2a
1

a
2

✏
1

✏
2

+ a2
2

✏2
2

].

Exploiting linearity of E[·] we obtain

�2

a

= a2
1

E(✏2
1

) + 2a
1

a
2

E(✏
1

✏
2

) + a2
2

E(✏2
2

) = a2
1

�2

1

+ a2
2

�2

2

. (5.2)

Minimizing 5.2 with respect to constrain 5.1 using method of Langrange’s multipli-
cators yields

� = �2

a

+ �(1� a
1

� a
2

)

= a2
1

�2

1

+ a2
2

�2

2

++�(1� a
1

� a
2

).

Differentiation with respect to a
1

and a
2

give us:

@�

@a
1

= 2a
1

�
1

� � ⌘ 0, (5.3)

@�

@a
2

= 2a
2

�
2

� � ⌘ 0. (5.4)

Solving linear system (5.3)–5.4 for a
1

, a
2

gives us

a
1

=
�2

2

�2

1

+ �2

2

, a
2

=
�2

1

�2

1

+ �2

2

, (5.5)

or equivalently,

a
1

=
1/�2

1

1/�2

1

+ 1/�2

2

, a
2

=
1/�2

2

1/�2

1

+ 1/�2

2

.

These coefficients are called optimal weights and minimize expected variance of
analysis �

a

. Substituting the coefficients into 5.2 we obtain
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�2

a

=
�4

2

(�2

1

+ �2

2

)2
+

�4

1

(�2

1

+ �2

2

)2
,

implying

�2

a

=
�2

1

�2

2

�2

1

+ �2

2

,

or equivalently,

1

�2

a

=
1

�2

1

+
1

�2

2

.

5.1.1 Example of scalar LS application

In this sections we assume that T
1

is a forecast of the scalar quantity (given by a
mathematical model) and T

2

is corresponding observation, i.e. T
1

= T
b

, T
2

= T
o

. It
holds that

T
a

= a
1

T
b

+ a
2

T
o

.

Using (5.5) we can show that

T
a

= (1� �2

b

�2

b

+ �2

o

)T
b

+
�2

b

�2

b

+ �2

o

T
o

,

yielding

T
a

= T
b

+W (T
o

� T
b

),

where the difference of background and observation T
b

�T
o

is called innovation and
W is the optimal innovation weight :

W = �2

b

(�2

b

+ �2

o

)�1.

The variance of analysis is then

�2

a

= (��2

b

+ ��2

o

)�1

= �2

b

�2

o

/(�2

b

+ �2

o

)

= (1�W )�2

b

.
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5.2 Optimal interpolation (OI)
OI is a multivariate generalization of the least squares for spatial analysis. Following
[Kal03], let’s assume a data assimilation problem of finding optimum analysis of a field
of model variables aggregated in a vector x

a

, given a background field x
b

available on
a analysis grid in two- or three- dimensional physical space, and a set of p irregularly
spaced observations y

o

.
The true value x

t

is estimated using OI as

x
t

⇡ x
a

= x
b

+W[y
o

�H(x
b

)],

✏
a

= x
t

� x
a

,

where x
a

, x
b

are vectors of analysis and background, respectively, W is the gain matrix,
y
o

is a vector of available observations. In previous sections we assumed that the
analyzed quantity is the same as the observed quantity. This is not a general case, where
the quantities can differ. Generally nonlinear observation operator H(·) transforms the
vectors from space of model into the space of observations and make modeled and
measured data thus comparable.

5.2.1 Best linear unbiased estimate

First describe the construction of the best linear unbiased estimator (multidimensional
linear regression). Assume two vectors

x =

0

BBB@

x
1

x
2

...
x
n

1

CCCA
, y =

0

BBB@

y
1

y
2

...
y
n

1

CCCA
.

centered about their mean values: E(x) = 0 a E(y) = 0. We would like to find a matrix
W such that

x
t

⇡ x
a

= Wy
= Wy � ✏

a

.

Here, ✏
a

is the regression error and W is a matrix minimizing the mean square error
E[✏T

a

✏
a

].
Explicit form of regression equation is

x
i

=
pX

k=1

w
ik

y
k

� ✏
i

.

The mean square error over all the elements of x and y is given by
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and the derivatives with respect to the weight matrix components is
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In matrix form
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� [x(t)yT (t)]
ij

}.

The optimal value of W minimizing expected value of ✏ is obtained from

WE[yyT ]� E[xyT ] = 0,

yielding normal equations

W = E(xyT )[E(yyT )]�1. (5.6)

5.2.2 Optimal value of gain matrix W in OI

To derive the form of the optimal gain matrix, we define the background errors and the
analysis errors as follows:

✏
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(x, y) = x
b

(x, y)� x
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(x, y),
✏
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(x, y) = x
a

(x, y)� x
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(5.7)

Similarly, we define the observation errors

✏
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o

�H(x
t

).

The background and observation errors are assumed to be unbiased

E[✏
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] = E[y
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]� E[y
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] = 0,

and mutually uncorellated, i.e. E[✏
o

✏T
b

] = 0.
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Using the errors, we define the error covariance matrices of the analysis, background
and observations respectively:
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Innovation vector is defined as the difference between the background and observa-
tion:
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If we write approximation

x
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we can use (5.6) to derive the optimal W:
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yielding

W = BHT(HBHT+R)�1,

where B is error covariance matrix of background field, R is error covariance matrix
of observations and H is matrix of a linear observation operator. If H is not linear, it
must be linearized using its Jacobian, i.e. the elements of H are given by

h
ij

=
@H

i

@x
j

.

The error covariance matrix of resulting analysis if given by

A = (I�WH)B.

5.2.3 Remarks

Usually, we assume that the error covariance matrix of observations has the form

R = �2
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,
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i.e., the observation error is the same for all observations.
A reasonable form of background error covariance matrix can be constructed as

B = �2
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where function �
ij

= �
ij

(r
i

� r
j

) is a homogeneous and isotropic correlation function.
The covariances are artificially introduced into the matrix according to paradigm, that
the covariance is proportional to the distance between the locations. Suitable functions
modeling this relation can be for example the following:
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, (5.8)
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where r
ij

is the Euclidean distance between locations and L is a length scale parameter.
More on construction of covariance matrices can be found in [GC99].

5.2.4 Uncertainty study - an alternative way for estimation of
error covariance’s using physical model

Uncertainty study performed on a physical model allows us to estimate its error covari-
ance structure [IH05]. Assuming that the distribution of error is Gaussian, we have to
determine the variance. It can be evaluated as a sample covariance of a set of realiza-
tions generated by multiple model runs with different initialization. Model inputs can
be treated as random with given probability density function or they can be regarded
as deterministic and set up to their “best expert estimate”.

We illustrate this approach on an atmospheric dispersion model (ADM) having 14
parameters [HPP08b]. The significant difference between treatment of ADM input
parameters (random vs. “best estimate”) is demonstrated in the following example.
Let’s have two different release scenarios:

1. First scenario S-14: fourteen parameters of AMD is treated as random (intensity
of release, horizontal dispersion, wind direction, dry and wet deposition, rain
intensity etc.)

2. Second scenario S-1: the only parameter is random – the rain intensity between
the fifth and sixth hour of release

In Fig. 5.1-left, prior mean value for S-14 is is visualized. In the same figure, right
side, we see mean value for S-1. Each row or column of covariance matrix is covari-
ance of value in certain spatial location with the rest. In Fig. 5.3 and 5.2 are shown
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visualizations of prior covariance to S-14 and S-1, respectively. In the left half of both
the figures is covariance of all the spatial locations with point [14; 5] (the point is close
to the source under the plume axis, in front of the rain zone). On the right side is
covariance of all the spatial locations with point [22; 25] (the point is inside the rain
zone). Both the reference points are denoted by blue squares.

In Fig. 5.3 we see covariance of a location close to the source under the plume
axis and another inside the rain zone (the circle–shaped area approximately in the
middle of the trace). Rain makes depletion process more intensive and speeds up
the deposition. It is noticeable, that the “shape” of covariance structure for both the
locations corresponds with the “shape” of mean value. This is because of predominant
influence of parameters having global effect (for example the intensity of release).

As in the second scenario S-1 is the only random parameter the rain intensity,
for all the members of ensemble is the tract of release the same until the rain zone.
It means, that the covariance of location before the rain zone with the rest of polar
network is zero (as can be seen in the Fig. 5.2-left). On the other hand, there are
strong covariances of the points inside and behind the zone. It represents analogy with
the law of conservation of released activity (if we neglect radioactive decay). The more
activity is depleted due to the rain, the less radioactivity can be depleted behind the
rain zone (Fig. 5.3-right). Interesting is also the fact, that the area of locations with
nonzero covariances is much smaller than in the first scenario. This is due to fact, that
the wind direction was treated as a fixed value and not as a random parameter. It
can be interpreted as the prior estimate based on S-1 says that the area affected by
radioactive pollution is smaller than the area estimated upon S-14. The rain intensity
is a typical example of a random parameters having local effect.

5.2.5 Numerical example

OI is demonstrated on assimilation of spatial distribution of deposition on terrain.

5.2.5.1 Influence of length-scale parameter L

In this example we compare assimilation results for two matrices B constructed using
(5.8) with different values of length scale parameter L. In Fig. 5.4we see the background
field and observations locations. Again, we assume that our computational domain is
a subset of a polar network comprising of 12⇥ 5 = 60 computational nodes. In Fig 5.5
we see assimilation results for different values of L.

5.2.5.2 Influence of variance of background error

Here we examine the influence of model error �2

b

. In Fig. 5.6 we see the background
field and the only measurement assumed in this example. In Fig. 5.7 are assimilation
results for different values of �2

b

. Twin model is the same as in the previous example.
The smaller the background field variance, the better correspondence of the assimilated
result with the twin model.
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Figure 5.1: Mean values for S-14 (left) and S-1 (right).

Figure 5.2: S-14: Covariance of selected points with the rest of polar network.

Figure 5.3: S-1: Covariance of selected points with the rest of polar network.
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Figure 5.4: Background field and observations locations (left) and the twin model
(right).

Figure 5.5: Assimilation results for different values of L. left: L=1.0E+05, right:
L=1,0E+08.

Figure 5.6: Background field and the only observation location.
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Figure 5.7: Background field and the only observation location. From top to bottom,
from left to right: �

b

=1.0E+12, 1.0E+13, 1.0E+14, 1.0E+15. The smaller the back-
ground field variance, the better correspondence of the assimilated result with the twin
model.
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Figure 5.8: Background field and twin model.

5.2.5.3 Correction of misspecified deposition due to rain during the plume
phase

In this experiment we assume an atmospheric release in the eastward direction, see Fig.
5.8. In the figure-top is the background field, the first estimate of the deposition given
by an atmospheric dispersion model. In the figure-bottom we see the twin model used
for simulation of observations. We see that the deposition much higher due to the rain
zone between km 40 to 50 with rain intensity 2mm/hod. We assume, that we sampled
measurement just in the middle of the rain area. The measurement tells us, that the
reposition was in reality much higher than tells us the dispersion model. We use OI to
correct whole prediction using this measurement.

Assimilation results are in Fig. 5.9. We examine deposition values under the axis
of the plume, i.e. just in the eastward direction. To demonstrate the advantages of the
statistical methods we compare the results with results achieved using SCM - Fig. 5.9-
top. We see that the assimilation procedure increases deposition in place of observation
(according to selected radius of influence), however, after the rain zone the deposition
remains the same as before assimilation procedure.

In Fig. 5.9-bottom we see results for OI. It performs much better, since it correctly
accounts for decrease of deposited activity behind the rain zone. If the deposition is
increased in the zone, it must best decreased behind the zone in order to fulfill the
law of activity conservation. The relations between the background field gridpoints is
encoded in the background field error covariance matrix (matrix S1 in Section 5.2.4),
which is not used in SCM. SCM is “blind” to the local effect of wet deposition in the
rain zone.
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Figure 5.9: Assimilation results for the scenario with a rain zone. Top: results achieved
using SCM. Bottom: results achieved using OI.



Chapter 6

Data assimilation as optimization task

6.1 Introduction
In this chapter we show that data assimilation can be also understood as an optimiza-
tion task, where we optimize values of parameters of a parameterized model in order
to obtain a good fit of observations. During assimilation we assume precise measure-
ments and thus the procedure cannot be presented as pure statistical DA. On the other
hand it requires proper environmental model which describes uncertainty propagation.
Our model is based on segmented Gaussian plume model (SGPM) approach that can
account approximately for dynamics of released discharges and short-term forecast of
hourly changes of meteorological conditions. For near area from the source and constant
meteorological conditions is used also simplified version of Gaussian straight-line prop-
agation (GPM). Implemented numerical difference scheme enables to approximate sim-
ulations of important parent-daughter pair formation. The objective multi-dimensional
function F of N variables (subjected to bounds) is minimized starting at initial esti-
mate. Commonly used Nelder-Mead direct search or Powell minimization methods are
tested here for elementary scenarios of accidental harmful discharges. Applicability
bounds are examined for which satisfactory results at acceptable time of computation
were achieved.

Even for the simplest formulation of atmospheric dispersion and deposition in terms
of Gaussian straight-line propagation the model M is nonlinear. In the following para-
graphs we shall concentrate on accidental radioactivity release into atmosphere and its
further deposition on terrain. Approximation in terms of source depletion scheme ac-
counts for removal mechanisms of admixtures from the plume due to radioactive decay
and dry and wet deposition on terrain [PHP07]. Let us proceed directly to the exami-
nation of the resulting fields of radioactivity deposition of a certain nuclide on terrain.
The output is assumed to be represented by vector Z having dimension equal to the
number N of total calculating points in the polar grid (in our caseN=2800, what means
80 radial sections and 35 concentric radial zones up to 100 km from the source of pollu-
tion). General expression for dependency of Z on model input parameters ✓

1

, ✓
2

, . . . , ✓
k

can be formally written as

65
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Z = M(✓
1

, ✓
2

, . . . , ✓
R

). (6.1)

Let there be R receptor points on terrain where the respective values are measured.
Generally, the number of receptors is much lower then N and we meet the problem
with rare measurements expressed by observation vector Y ⌘ (y

1

, y
2

, ...., y
R

). Positions
of sensors generally differ from the points of calculation grid. W

Number K of input parameters is rather high (several tenth) and then for practical
purposes only S of them are treated as random. Rest of them are assumed to be less
important from viewpoint of uncertainty propagation through the model and we assign
them their best estimated values. (6.1) has then the form

Z = M(✓
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)

In other words a certain number S of selected problem-dependent optimization param-
eters ✓

1

, ✓
2

, . . . , ✓b
S

, are considered to be uncertain and subjected to fluctuations within
some range. The function F is constructed as a sum of squares in the measurement
points between the values of model predictions and values observed in terrain expressed
as:

F (✓
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Minimization algorithm searches a minimum of scalar function F of S parameters
starting at an initial “best estimate”. In brief glance, the test points ✓

1

, ✓
2

, . . . , ✓
S

of
the objective function F are arranged as a S-dimensional simplex and the algorithm
tries to replace iteratively individual points with aim to shrink the simplex towards the
best points. Further specific analysis concerns the resulting spatial fields of radioactiv-
ity deposition of a certain nuclide on terrain. Model predictions can be interpreted as
Gaussian surface (or superposition of partial Gaussian extents) over the terrain. Our
objective is to take into account both model predictions and available measurements
incoming from the terrain and to improve spatial distribution of deposited radioactivity.
We can imagine the iterative process of minimization of function F such consecutive ad-
justment of the resulting respond surface, always according to the new evaluation of the
parameters ✓

1

, ✓
2

, . . . , ✓
S

. Thus, the predicted respond surface of results is gradually “de-
formed by permissible manipulations” directly driven by changes of problem-dependent
optimization parameters ✓ . MT algorithm controls the procedure until the best fit of
modified surface with observation values is reached. Important feature of the method
insists in preservation of physical knowledge, because the new set of parameters eval-
uated by minimization algorithm always re-enters the entire nonlinear environmental
model M according to (6.1).
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6.2 Numerical examples

6.2.1 Practical implementation

Investigation of applicability of minimization assimilation technique was tested on so
called “twin experiment”. Lack of real observations is simulated by artificial genera-
tion of measurements. Moreover, if we use for this generation the same environmental
model (e.g. for a fix one set of disturbed input parameters) we can examine the problem
convergence issues. In application part of the paper the results of two simulation exper-
iments TWIN1 and TWIN2 are illustrated. TWIN1 relates to release of nuclide I-131.
Its further straight-line propagation and deposition on terrain is described according to
simple scheme of straight-line Gaussian plume model. TWIN2 experiment deals with
the problem of evolution of Cs-137 deposition on terrain during the plume phase. Min-
imization search is applied with more complicated but more realistic segmented model
SGPM.

6.2.2 MT applied to simple Gaussian straight-line model

Accidental one-hour release of radionuclide I-131 with total radioactivity 1.28E+11Bq
discharged into atmosphere from nuclear facility is analyzed. Release height is 100m,
propagation continues under constant meteorological conditions (straight-line propa-
gation in direction North-East, mean plume velocity 1.6m/s, Pasquill’s category D
of atmospheric stability, no rain). Atmospheric dispersion coefficients are calculated
according to KFK-Jülich semi-empirical formulas.

In the first step all input parameters are assumed to be represented by their best
estimate values denoted by ✓b

i

and then the corresponding output vector Zb presents
deterministic solution of deposited activity of selected nuclide on terrain. At the same
time Zb represents initial estimate for starting of minimization iterative search. In the
second step we shall further reduce the number of parameters S from (6.2) to four
parameters. Corresponding four uncertainties c

1

, c
2

, c
3,

c
4

are introduced into the model
according to scheme

✓
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= c
i

✓b
i

, ✓
i

= ✓
i

+ c
i

+ f(✓b
i

).

Specifically, their meaning, usage in the environmental code and real choice is given in
Table 6.1.

The function F (✓
1

, ✓
2

, . . . , ✓
S

) now becomes F (c
1

, c
2

, c
3

, c
4

) and minimization algo-
rithm handles with 4-dimensional simplex. For purposes of construction of function
F we have used slight modification of probabilistic version of existing environmental
model HARP where original random inputs c

1

, c
2

, c
3

, c
4

now play more general role of
uncertainties characterized only by their range of possible fluctuations (see column 4 in
Table 6.1). Minimization algorithm uses this constraints such lower and upper bounds
for permissible manipulations with values of variables c

1

, c
2

, c
3

, c
4

(see arrows in Figure
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parameter unit uncertainty inside code uncertainty bounds
✓
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2 h0.1, 2.9i
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: wind direction rad ' = 'b + c
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2 h�5.0, 5.0i
✓
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: dry depo. velocity m.s�1 v
g

= c
4

vb
g

c
4

2 h0.1, 4.0i
Table 6.1: Introduction of uncertainties for four important input model parameters.

Figure 6.1: I-131 deposition levels [Bq.m�2] related to the end of plume progression.
TWIN I experiment using Gaussian straight-line model. TRACE I and TRACE II are
initial best estimate and resulting assimilation with simulated measurements (at red
circles).

1). During TWIN experiments the observation vector Y ⌘ (y
1

, y
2

, ...., y
R

) is simulated
artificially, the simplest way is utilization of the same environmental model M.

Deterministic best estimate distribution Zb generated on the polar calculation grid in
original wind direction Sorig (North-East) is in Fig. 6.1 as TRACE I . It corresponds to
the best estimate values (c

1

, c
2

, c
3,

c
4

)best = (1.0, 1.0, 1.0, 1.0). Selected positions of obser-
vations are labelled by red circles. For simulation of measurements in this red points we
have selected a certain fixed quartet (c

1

, c
2

, c
3,

c
4

)obs = (1.73, 1.51, 4.00, 1.98). Artificially
simulated measurements were generated using vector Zobs = H ⇥M((c

1

, c
2

, c
3,

c
4

)obs)
⇤
.

Minimization algorithm in successive iterations j brings newly generated quartets (c
1

, c
2

, c
3,

c
4

)jcloser
and closer to the (c

1

, c
2

, c
3,

c
4

)obs. Fast convergence of assimilated model predictions
towards simulated observations has been found. 220 iterations are calculated dur-
ing about 6 minutes and the following values has been found: (c

1

, c
2

, c
3,

c
4

)j=220 =
(1.731, 1.514,+4.003, 1.982). It demonstrates very good consent with “simulated” obser-
vations generated by (c

1

, c
2

, c
3,

c
4

)obs. The results are illustrated in Fig. 6.1 as TRACE
II isolines.

Original best estimate deposition on terrain (and at the same time initial guess
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entering MT) is labelled as TRACE I. Deposition after 220 iterations is calculated as
Zj=220 = H ⇥M((c

1

, c
2

, c
3,

c
4

)obs)
⇤

and its contours illustrates TRACE II. The assim-
ilated respond surface TRACE II is at the same time practically identical with Zobs

generated according to M((c
1

, c
2

, c
3,

c
4

)obs) originally used for artificial simulations of
measurements. The shapes of TRACE I and TRACE II reflect imposed changes in val-
ues of cbest

1

to cobs
1

(higher nuclide discharge), cbest
2

to cobs
2

(higher peripheral dispersion),
cbest
3

to cobs
3

(twist by 18°), cbest
4

to cobs
4

(more intensive dry deposition causing steeper
longitudinal gradient).

Direct search algorithm connected with Gaussian straight- line propagation model
has proved fast convergence provided that the measurements are well positioned. Its
applicability depends on validity and limitations of model itself. However, the TWIN
1 results support an idea of MT application for preliminary fleeting estimation in near
distances and during constant meteorological conditions.

6.3 MT with more realistic SGPM environmental model
TWIN2 scenario is formulated in connection with segmented Gaussian plume scheme
(model SGPM marked as MSGPM), which is much more complicated then straight- line
spreading (our approach described in [PHP07]). The model synchronizes segmentation
of release dynamics with hourly meteorological forecasts. The first two consecutive
release segments of Cs-137 discharge (each with 1 hour duration) with released amount
2.0E+17Bq and 1.0E+17Bq has character of severe loss of coolant accident (LOCA)
with partial fuel cladding rupture and fuel melting. Short-term meteorological forecast
for the next 48 hours is provided by the Czech meteorological service. Then, for each
hour since the release initiation there are available predictions of wind direction and
speed, category of atmospheric stability according to Pasquill’s classification and rain
precipitation. Omitting other details, the TWIN II scenario covers period of the first 3
hours from the release start and we are declaring the following plan:

1. Each of the two segments is modeled up to third hour after the release start taking
into account short-term hourly meteorological forecast. The situation just after 3
hours is given by superposition of both segments in their successive meteorological
hourly phases (5 phases in total). Resulting best estimate fields are calculated in
analogy with Equation (1) according to scheme

Zbest

3hours

= H ⇥MSGPM((c
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, c
31

, c
32
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33
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4

, c
51
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52

, c
53

)best)
⇤

and is illustrated in Fig. 6.2 as TRACE I.

2. Number of uncertainties is increased from four to five as c
1

, c
2

, c
3

, c
4

, c
5

. c
5

stands
for fluctuation of mean wind velocity. If we suppose wind direction and velocity
fluctuations to be independent between hourly phases, then c

3

and c
5

split to 6
independent uncertainties c

31

, c
32

, c
33

(for wind direction predicted for hours 1, 2
,3) and c

51

, c
52

, c
53

(for wind velocity predicted for hours 1, 2 ,3).
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Figure 6.2: Nominal deposition of Cs-137 (just 3 hours after the release start).

3. We have simulated artificially fictive “observation surface” according to

Zobs

3hours

= H ⇥MSGPM((c
1

, c
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, c
31

, c
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, c
33
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4
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, c
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)obs)
⇤
.

Let us suppose their incoming in one stroke just at hour 3 after the accident
start. Let us state beforehand that assimilated TRACE II from Fig. 6.3 nearly
corresponds with the “observation surface”.

4. The main goal is to accomplish assimilation of the model predictions Zbest in com-
pliance with 3hour measurements in analogy with (6.2) using BCPOL procedure
of minimization.

Deposition of Cs-137 on terrain after 728 iterations is calculated as

Zj=728

3hours

= H ⇥MSGPM((c
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)j=728)
⇤

and its isolines illustrates in Fig. 6.3 a trail on terrain marked as TRACE II. The
results represent a new distribution just at third hour after the release start, which
is improved by observations. Minimization algorithm is initiated by the best estimate
solution (TRACE I ) and gradually approaches to the simulated observations. In short
numerical summary, TWIN2 experiment required to prepare in advance sets of param-
eters (c

1

, c
2

, c
31

, c
32

, c
33

, c
4

, c
51

, c
52

, c
53

) for:

c
1

c
2

c
13

c
23

c
33

c
4

c
15

c
25

c
35

best 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
measurements 7.0 2.0 -4.0, -5.0 -6.0 2.55 -0.5 -0.6 -0.7



CHAPTER 6. DATA ASSIMILATION AS OPTIMIZATION TASK 71

Figure 6.3: Assimilation of predicted deposition of 137Cs and simulated measurements
just 3 hours after the release start; artificially simulated measurements in black squares.

Meaning of the parameters c
1

to c
4

is the same as described in Table 6.1. c
5

stands
for uncertainty of the mean velocity of the plume. Further splitting to c

i5

, i = 1, 2, 3,
holds true for independent fluctuations of the mean velocity ū

i

forecasted for hours i.
Uncertain ū

i

is then expressed according to ū
i

= ūbest

i

(1 + 0.35c
i5

), c
i5

2 h�1, 1i.
TWIN II experiment took into consideration 9 optimization parameters with con-

structive idea to discriminate according to their global or local effect (introduced into
the wind vector). The computation procedure is time consuming, but satisfactory
convergence can be achieve. More detailed analysis related to the criterion of match
between model and measurements (e.g. [ET04]) is so far pending.

6.4 Conclusion
Advantage of utilization of SGPM output fields as a fitting surface insists in preservation
of physical knowledge of the model. Presented experience related to applicability of
minimization techniques indicates that number of selected optimization parameters c

i

should not be too high in order to avoid the poor convergence or even taking the wrong
way (more sophisticated algorithms have to be searched). At this stage we recommend
to consider five optimization parameters included in the TWIN II experiment (where
wind velocity vector is global, it means no further splitting of c

3

to further c
i3

and c
5

to
c
i5

) and link the 6th parameter c
6

representing uncertainty in precipitation intensity
with local effect.
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Presented minimization technique fits results on a certain specific situation. Any
resulting effect (e.g. peripheral plume dispersion) usually depends on many other input
random parameters. Thus, in no case the presented fitting technique should not be
confused with parameter calibration. The problem of handling of real measurements
still remains opened. Presented approach can play a specific role among empirical
assimilation techniques, especially as fast and efficient software tool for analysis of
possible discrepancies between the model predictions and observations incoming from
terrain. The method is incorporated into the assimilation subsystem of the HARP code
[HPP08a].

Realistic prediction of evolution of radiation situation during emergency gives de-
cision makers necessary time on judgement and introduction of efficient urgent coun-
termeasures on population protection. Reliable model predictions for the next hours
in medium distances should account both for implementation of spatial meteorological
forecast and development of new numerical techniques for time update of the trajectory
models (e.g. how to propagate model for the next hours starting from assimilated results
TRACE II in Fig. 6.3 Interventions introduced on the basis non-assimilated TRACE
I could lead to fatal consequences on population health resulting from ill-anticipated
impacted areas.



Chapter 7

Bayesian Methods

7.1 Identification of data assimilation with Bayesian
estimation

Bayesian approach is based on quantifying uncertainty in statistical inference via prob-
ability density functions (pdfs). The importance of such approach is justified by the
fact, that it facilitates a common-sense interpretation of statistical conclusions [Gel04].

If we think of the forecast and the analysis as of pdfs, the data assimilation can
be understood as a particular case of recursive Bayesian estimation [Pet81]. In the
Bayesian framework, the forecast and the analysis are represented by the prior pdf
and posterior pdf, respectively. When no measurements are available, the pdf of the
considered state must be rather wide to cover all possible realizations of the state. Each
incoming measurement brings information about the “true” state, reducing the original
uncertainty. In effect, with increasing measurements, the posterior pdf is narrowing
down around the best possible estimate. From the Bayesian point of view, data as-
similation is analogical to the problem of filtering, i.e., characterizing the distribution
of the state of the hidden Markov model at the present time, given the information
provided by all of the observations received up to the present time. Data update step
of the assimilation cycle is implemented using Bayes formula.

7.2 Recursive Bayesian filtering
The task of data assimilation can be interpreted as a problem of inference of a discrete-
time stochastic process :

x
t

⇠ p(x
t

|x
t�1

), (7.1)
y
t

⇠ p(y
t

|x
t

). (7.2)

Here, x
t

2 RN

x is a vector known as the state variable, y
t

2 RN

y is a vector of ob-
servations, t is the time index, and p(·|·) denotes the conditional pdf of the variable.

73
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State evolution model (7.1) describes the evolution of the state variables x
t

over time,
whereas the measurement model (7.2) explains how the measurements y

t

relate to the
state variables.

System given by (7.1)–(7.2) is rather general. It represents a Markov process of the
first order, where realization of the process at time t contains all the information about
the past, which is necessary to calculate its future behavior. In data assimilation we
often restrict to its special case, where the explicit expressions for both the state model
and the measurement model exist. This results in a discrete-time state-space models
with additive noise represented by a set of difference equations [Jaz70]:

x
t

= M
t

(x
t�1

) +w
t

, (7.3)
y
t

= H
t

(x
t

) + v
t

. (7.4)

The state transition operator M
t

: RN

x ! RN

x integrates the state forward to the
next time step. The observation operator H

t

: RN

x ! RN

y transforms vectors from
the state-space to the space of observations and makes them thus comparable with the
observations. In environmental modeling, these operators represent our mathematical
conceptualization of the physical reality under investigation. Vectors w

t

and v
t

with
appropriate dimensions represent mutually independent noise processes of the model
and the observations, respectively.

Formally, the prior distribution p(x
0

) representing uncertainty of the forecast in
time t = 0 is transformed into the posterior pdf p(x

t

|y
1;t

) using measurements y
1:t

=
[y

1

, . . . ,y
t

] by recursive application of the data update and the time update:

1. Data update:

p(x
t

|y
1:t

) =
p (y

t

|x
t

) p (x
t

|y
1:t�1

)

p(y
t

|y
1:t�1

)
=

p(y
t

|x
t

)p(x
t

|y
1:t�1

)´
p(y

t

|x
t

)p(x
t

|y
1:t�1

)dx
t

, (7.5)

2. Time update:
p(x

t+1

|y
1:t

) =

ˆ
p(x

t+1

|x
t

)p(x
t

|y
1:t

)dx
t

. (7.6)

Given the prior pdf p(x
t

|y
1:t�1

) representing uncertainty in the forecast in time t, we use
Bayes formula (7.5) and evaluate the posterior pdf p (x

t

|y
1:t

) representing uncertainty
in the analysis in time t. Likelihood function p(y

t

|x
t

) is defined by the observation
model (7.4). In recursive Bayesian filtering, we exploit the fact that if the prior pdf is
properly chosen from a class conjugate to (7.2), the formula (7.5) yields a posterior pdf
of the same type.

Chapman–Kolmogorov equation (7.6) [Jaz70] advances the the posterior p (x
t

|y
1:t

)
in time and produces the forecast in time t + 1 represented by the prior p(x

t+1

|y
1:t

).
Pdf p(x

t+1

|x
t

) is called the state transition pdf and represents model dynamics given
by (7.3). Integration in (7.5)–(7.6) and everywhere else in this work is performed over
the maximum support of the integrand, if not stated otherwise.
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Using posterior p (x
t

|y
1:t

), we can evaluate the expected value of a function f(·) of
x
t

integrable with respect to p(x
t

|y
1:t

), [DDFG01]:

E[f(x
t

)|y
1:t

] =

ˆ
f(x

t

)p(x
t

|y
1:t

)dx
t

. (7.7)

Evaluation of (7.5) and (7.6) may involve integration over complex spaces and in
the most cases it is computationally infeasible. Thats the reason why were developed
methods for solution of the problem under simplifying conditions or methods providing
some sub-optimal, but still satisfactory, solution. In the following text we briefly review
the basic approaches to solution of the sequential data assimilation problem.

7.3 Kalman filter
Kalman Filter (KF) [Kal60] gives us the optimal solution for the system (7.3)–(7.4) with
linear dynamics (operators M

t

and H
t

are linear) and zero mean Gaussian white noise
processes w

t

and v
t

. The state transition pdf p(x
t

|x
t�1

) and the likelihood function
p(y

t

|x
t

) then become of the Gaussian type:

p(x
t

|x
t�1

) = N (M
t

x
t�1

,Q
t

), p(y
t

|x
t

) = N (H
t

x
t

,R
t

).

Here, N (µ,⌃) is a Gaussian pdf with mean value µ and covariance matrix ⌃. Ma-
trices M

t

2 RN

x

⇥N

x and H
t

2 RN

y

⇥N

x are matrices of linear operators M
t

and H
t

,
respectively. Matrices Q

t

and R
t

are known covariance matrices of model error and
measurement error, respectively, with appropriate dimensions:

Q
t

= E
⇥
v
t

vT

t

⇤
, R

t

= E
⇥
w

t

wT

t

⇤
.

The analysis (posterior state estimate) is in the Kalman filter represented by mean
value x̄

t|t and covariance matrix P
t|t of the estimated filtering Gaussian distribution:

x̄
t|t = E [x

t

|y
1:t

] , P
t|t = E

⇥
(x

t

� x̄
t|t)(xt

� x̄
t|t)

T|y
1:t

⇤
. (7.8)

Similarly, the forecast (prior state estimate) is represented with mean value x̄
t+1|t and

its covariance P
t+1|t of estimated predictive Gaussian distribution:

x̄
t+1|t = E[x

t+1

|y
1:t

], P
t+1|t = E

⇥
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t+1

� x̄
t+1|t)(xt+1
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T|y
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⇤
. (7.9)

The data update step of the KF assimilation cycled is given by the following equa-
tions:

K
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= P
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HT
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t
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��1

, (7.10)
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P
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R
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= (I�K

t

H
t

)P
t|t�1

, (7.13)
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where I 2 RN

x

⇥N

x is the identity matrix. We use the Kalman gain matrix K
t

2 RN

x

⇥N

y

for linear weighing of contributions given by the current observations y
t

and the forecast
to the resulting analysis. The analysis x̄

t|t together with the posterior error covariance
matrix P

t|t represent the sufficient statistics of the estimated posterior Gaussian pdf,

p(x
t

|y
1:t

) = N (x̄
t|t,Pt|t).

The time update given by (7.14)–(7.15)

x̄
t+1|t = Mx̄

t|t, (7.14)
P

t+1|t = M
t

P
t|tM

T

t

+Q
t+1

, (7.15)

evaluates new prior pdf given by the forecast x̄
t+1|t and its error covariance matrix

P
t+1|t,

p(x
t+1

|y
1:t

) = N (x̄
t+1|t,Pt+1|t).

The algorithm is initialized with prior estimates of the mean value x̄
0|�1

and covariance
matrix P

0|�1

.
Generally, violation of assumptions on linearity of the model and normality of the

noise terms leads to a suboptimal solution. The computationally cheaper form of the
posterior error covariance matrix (7.13) should be used only for the optimal gain K

t

,
otherwise it can cause a numerical instability.

7.3.1 Suboptimal solution for nonlinear model

Suboptimal modification of the KF algorithm for nonlinear M
t

and H
t

is called the
Extended Kalman Filter (EKF) [WB95]. The EKF is based on assumption that local
linearization of (7.3)–(7.4) may be sufficient description of nonlinearity. Given the M

t

and H
t

are differentiable functions, we can linearize them around the current estimates
using the first terms in their Taylor series expansions:

M
t

⇡ @M
t

@x

����
x=

¯

x

t|t

, H
t

⇡ @H
t

@x

����
x=

¯

x

t+1|t

. (7.16)

Matrices M
t

and H
t

are used in the Kalman filter equations for advancing the posterior
covariance matrix and during the data update step, respectively. Since the Jacobians
(7.16) are dependent on the current state estimates, they must be recalculated at each
time step.

If the functions M
t

and H
t

are highly nonlinear, the results of the EKF are rather
poor. We can use expansions of higher orders or choose an alternative filtering method-
ology, e.g., the Unscented Kalman Filter [JU97] or an ensemble filter .
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7.4 Ensemble filters
Since the propagation and storing of large covariance matrices is computationally de-
manding, formally correct KF and its variants are not suitable for high-dimensional
problems commonly occurring in different geoscience applications, for instance, in me-
teorology [HMP+05]. The idea of ensemble filtering was introduced by [Eve94]. En-
semble filters avoid explicit evolution of covariance by approximating the estimated pdf
with an ensemble of states. It can be understood as a Monte Carlo approximation of
the traditional KF.

7.4.1 Ensemble Kalman filter

In Ensemble Kalman Filter (EnKF), a small random ensemble of states is used to
represent the estimated pdf. Similarly to the KF, the EnKF makes the assumption
that all probability density functions involved are Gaussian.

Let X
t|t�1

denote prior ensemble in time t,

X
t|t�1

= [x1

t|t�1

,x2

t|t�1

, . . . ,xM

t|t�1

].

The prior estimate x̄
t|t�1

and prior covariance matrix P
t|t�1

are approximated as sample
mean and sample variance of X

t|t�1

, respectively:
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, (7.17)
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The posterior ensemble
X

t|t = [x1

t|t,x
2

t|t, . . . ,x
M

t|t ]

is given by the Bayesian data update, where each ensemble member is updated sepa-
rately:
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�
, i = 1, . . . ,M. (7.20)

A set of perturbed observation vectors yi

t

⇠ N (y
t

,R
t

), i = 1, . . . ,M , must be used
to update the ensemble members in order to fulfill (7.12). It can be shown that if all
the ensemble members were updated with the same observation vector y

t

and the same
gain K

t

, the posterior covariance will be

P
t|t = (I�K

t

H
t

)P
t|t�1

(I�K
t

H
t

)T. (7.21)
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Without the term K
t

R
t

KT

t

is the posterior covariance systematically underestimated.
Using posterior ensemble X

t|t, posterior estimate x̄
t|t and covariance P

t|t are ap-
proximated with its sample mean and variance:
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Advancing of the estimated Gaussian pdf approximated with the ensemble in time is
achieved by simply advancing each ensemble member with the nonlinear forecast model
M

t

:
xi

t+1|t = M
t

�
xi

t|t
�
, i = 1, . . . ,M.

Since the time evolution of the posterior covariance is performed by evolution of an
ensemble, the posterior covariance itself does not have to be stored.

What is more, since only P
t|t�1

HT and HP
t|t�1

HT are required during filter evalu-
ation, the full prior covariance matrix P

t|t�1

needs never to be calculated [Eve94]. We
can directly calculate the terms occurring in the expression for the Kalman gain,
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Covariance P
t|t�1

is also used in the formula for predictive density of the observations,

p(y
t
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) = N (H
t
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t
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HT
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+R
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, (7.24)

which corresponds to the standard predictive density of the Kalman filter [Pet81]. This
quantity is often called marginal likelihood (marginalization is with respect to x

t

) and
plays an important role in statistical model selection [Jef61].

7.4.1.1 Efficient implementation of EnKF

Following [Man06], let X̃
t

= [x̃1

t

, . . . , x̃M

t

] = [x1

t

� x̄
t

, . . .xM
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] be an ensemble of
deviations from the ensemble mean. X̃
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can be easily calculated using
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stands for the ensemble, where all the members are equal to the
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Algorithm 7.1 EnKF with perturbed observations.
1. Initialization. Generate a prior ensemble (background field):

X0|�1 =
h
x1
0|�1, . . . ,x

M
0|�1

i
, xi

0|�1 ⇠ N (x̄0,P0), i = 1, . . . ,M.

2. EnKF data update:

(a) Generate perturbed measurements:

Dt =
⇥
y1
t , . . . ,y

M
t

⇤
, yi

t ⇠ N (yt,Rt), i = 1, . . . , Ny.

(b) Calculate Kalman gain Kt for update of ensemble:
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M
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i
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Kt = St(HtSt)
TZ�1

t .

(c) Update the ensemble:

Xt|t = Xt|t�1 +Kt(Dt �HtXt|t�1).

3. EnKF time update. Predict new ensemble:

xi
t+1|t = M(xi

t|t), i = 1, . . . ,M.

4. Set t := t+ 1 and iterate from step 2.

mean values x̄
t

of the original ensemble X
t

. Covariance of X
t

can be then evaluated
using

P
t

=
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X̃

t

X̃T

t

. (7.25)

If we rewrite (7.25) as follows,

P
t

=
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M � 1
X̃

t

1p
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X̃T

t

= S
t

ST

t

,

the matrix S
t

can be thought of as a square root of P
t

.
Bayesian update can be then formulated in a matrix form, where all the ensemble

members are updated simultaneously and the square root S
t|t�1

of P
t|t�1

is used,

X
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Here, D
t

= [y1

t

, . . . ,yM

t

] is the ensemble of perturbed observation vectors.
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For a large number of data points, the inversion of the term Z
t

= H
t

P
t|t�1

HT

t

+R
t

in (7.19) can be computationally demanding or even numerically unstable [Man06].
Given that the observations error covariance matrix R

t

is diagonal, i.e, the observa-
tions are uncorrelated, we can use Sherman–Morrison–Woodbury formula [Hag89] for
computation of Z�1

t

:
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�
C�1 +VA�1U

��1

VA�1. (7.26)

Substituting A = R
t

, U = H
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S
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, C = I, V = H
t

S
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into (7.26) yields formula for
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, where only the diagonal matrix R
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7.4.2 Ensemble square root filter

The Ensemble square root filter (EnSRF) is a revised version of the EnKF that elimi-
nates the necessity to perturb the observations [WH02] and the posterior ensemble is
formed deterministically. Deterministic methods were developed to address the prob-
lems related to sampling errors associated with the use of perturbed observations in
stochastic analysis ensemble update methods [TAB+03]. [WH02] demonstrated that
for an ensemble of a given size, the EnSRF is more accurate than the EnKF.

In the EnSRF, the data update step (7.20) is expressed as N + 1 equations for
separate update of the ensemble mean x̄

t|t�1

and the deviations x̃i

t|t�1

:
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Here, K
t

is the traditional Kalman gain (7.19) and K̃
t

is the gain used to update the
deviations. In the EnKF, K
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= K̃
t

and deviations x̃
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are updated using
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where ỹi

t

⇠ N (0,R
t

) are the deviations of perturbed measurements from the mean
y
t

[BvLE98].
[WH02] derived a formula for K̃

t

that will results in an ensemble whose posterior
error covariance satisfies (7.12). Substituting K̃

t

into (7.21) and requiring the expression
to be equal to the correct P

t|t, we obtain the following equation for K̃
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which has a solution

K̃
t

= P
t|t�1

HT

⇣q
HP

t|t�1

HT +R
t

⌘�1

�
T hq

HP
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R
t

i�1

. (7.29)

The fact that the evaluation of (7.29) involves square roots of error covariance matrices
is the reason why the algorithm implementing the deterministic version of data update is
called the ensemble square root filter. The matrix square roots in (7.29) are not unique
and can be calculated by a commonly used factorization methods, e.g., Cholesky or
singular value decomposition.

Given that the state evolution operator M
t

is linear, the posterior ensemble mean
x̄
t|t and the posterior deviations from the mean x̃i

t|t can be evolved separately

x̄
t+1|t = M

t

x̄
t|t,

X̃
t+1|t = M

t

X̃
t|t.

Otherwise, the full ensemble X
t

must be formed before the time update.

7.4.2.1 Sequential processing of observations

For an individual observation, i.e., when H 2 R1⇥N

x and R
t

2 R, the terms HP
t|t�1

HT

and R
t

reduce to scalars and (7.28) may be written as follows,

HP
t|t�1

HT

HP
t|t�1

HT +R
t

K̃
t

K̃
t

�K
t

K̃
t

� K̃
t

K
t

+K
t

K
t

= 0. (7.30)

If the desired gain K̃
t

is assumed to be linearly proportional to the original gain K,

K̃
t

= ↵
t

K
t

, (7.31)

where ↵ 2 R is a constant, we obtain

HP
t|t�1

HT

HP
t|t�1

HT +R
t

↵2K
t

K
t

� 2↵K
t

K
t

�K
t

K
t

= 0. (7.32)

This yields a quadratic equation for ↵

HP
t|t�1

HT

HP
t|t�1

HT +R
t

↵2 � 2↵K
t

K
t

+ 1 = 0. (7.33)

The equation has two roots. Since we want the deviations from the ensemble mean to
be reduced in magnitude, i.e., to decrease posterior variance of the ensemble, and to
maintain the same sign, the appropriate solution is

↵
t

=

 
1 +

s
R

t

HP
t|t�1

HT +R
t

!�1

, (7.34)
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which is always between 0 and 1 [WH02].
In the case of non-correlated observations, when the observation error covariance

matrix R
t

is diagonal, the observations y
t

can be processed sequentially, one at a
time. Updating the deviations from ensemble mean with K̃

t

given by (7.31) and (7.34)
ensures the posterior error covariance to be equal to (7.12). Algorithm of EnSRF with
sequential processing of observations is summarized in Algorithm 7.2.

Algorithm 7.2 EnSRF with sequential processing of observations.
1. Initialization. Generate a prior ensemble (background field):

X0|�1 =
h
x1
0|�1, . . . ,x

M
0|�1

i
, xi

t ⇠ N (x̄0,P0), i = 1, . . . ,M,

and set t := 0.

2. EnSRF data update. For j = 1, . . . , Ny:

(a) Calculate Kalman gain Kj;t for update of ensemble mean with jth observation

St|t�1 =
1p

M � 1

✓
Xt � 1

M
(Xt N

x

⇥1) 
T
N

x

⇥1

◆
,

Kj;t =
St|t�1(HiSt|t�1)

T

HiSt|t�1(HiSt|t�1)T +Rj;t
,

where Rj;t is variance of j-th observation and Hj 2 R1⇥n
is the corresponding observation

operator.

(b) Calculate Kalman gain K̃j;t for update of deviations from the mean with j-th observation:

K̃j;t = ↵j;tKj;t,

↵j;t =

"
1 +

s
Rj;t

�
HjSt|t�1

� �
HjSt|t�1

�T
+Rj;t

#�1

.

(c) Update of ensemble mean x̄t|t�1 and departures from the mean X̃t|t�1

x̄t|t = x̄t|t�1 +Kt

�
yt �Hx̄t|t�1

�

x̃i
t|t = x̃i

t|t�1 � K̃tHx̃i
t|t�1, i = 1, . . . ,M.

3. EnSRF time update. Predict new ensemble according to:

xi
t+1|t = M(xi

t|t), i = 1, . . . ,M.

4. Set t := t+ 1 and iterate from step 2.
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7.4.3 Sampling error issues in ensemble filtering

7.4.3.1 Ensemble Inflation

For a finite-sized ensemble, there is a sampling error in the estimation of forecast er-
ror covariance matrix (7.18). The theoretical exact forecast error covariance obtained
from an infinite-sized ensemble differs from any obtained from a finite-sized ensemble of
M 2 N members [WH02]. Implication of this fact is, that in ensemble-based assimila-
tion systems, the forecast error is systematically underestimated. Information brought
by new measurements is then penalized because the measurement error seems to be
relatively higher to the underestimated forecast error. Filter becomes too confident in
the forecast and the divergence may occur. This effect can be observed particularly in
small ensembles. Multiplicative ensemble inflation is a method for artificial increase of
the model forecast error variance [AA99]. The inflation is used to replace the forecast
ensemble according to:

xi ! �
�
xi � x̄i

�
+ x̄i, i = 1, . . . ,M (7.35)

with inflation factor � slightly greater than 1. From (7.35) is obvious that the mean
value of the ensemble remains unchanged but its variance is increased.

7.4.3.2 Localization of covariance

The sampling error introduced by the finite ensemble size also causes spurious co-
variances in the estimated forecast error covariance matrix. Techniques of covariance
localization filter out the small and noisy covariances and reduce the impact of the
observations on remote state variables. In spatial data assimilation, where the state
vector usually represent values of a quantity on a computational grid, the distance be-
tween states and observation simply denotes the real geographical distance between the
grid points and the place of observation. Localization of a covariance matrix can be
performed by using the Schur product of a localization matrix with the covariance ma-
trix [GC99]. Schur product is an element-by-element matrix multiplication: the Schur
product A � B of matrices A 2 Rm⇥n and B 2 Rm⇥n is matrix C 2 Rm⇥n, where
C

ij

= A
ij

B
ij

, i = 1, . . . , n, j = 1, . . . ,m.
More specifically, we modify the formula for the Kalman gain (7.19) to be

K
t

= (⇢ �P
t|t�1

)HT

t

�
H

t

(⇢ �P
t|t�1

)HT

t

+R
t

��1

, (7.36)

where ⇢ is a localization matrix [HM01]. Localization matrices are constructed by the
means of correlation functions. Maximum of such a function reached at the observation
location is 1 and the function typically decreases monotonically to zero at some finite
distance from the observation location. The rate of correlation decrease with distance is
given by the length-scale parameter l. Let ||D

ij

|| be the Euclidean distance between the
observation location i and the grid points j. Then the example of a localization function
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Figure 7.1: Correlation function given by (7.37) with different values of the length-scale
parameter l.

is the compactly supported, 5th order piecewise rational function ⌦(
p

10/3l, ||D
ij

||)
suggested by [GC99]:
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(7.37)

where a and b correspond to
p

10/3l and ||D
ij

||, respectively. Function given by (7.37)
is similar to the Gaussian distribution in shape but is has a compact support. It is a
homogeneous and isotropic correlation function, it means that it has the same behavior
in all direction and the rate of correlation decrease is also invariant to translation of
observation location in space. Correlation function given by (7.37) with different values
of l is visualized in Figure 7.1.

Illustration of localization effect on spatial data is illustrated in Figure 7.2. In
Figure 7.2 (a), a contour plot of spatial covariance of a point denoted with the red
circle with the rest of the polar computational grid is visualized. In Figures 7.2 (b)–(d),
we see the resulting covariance after application of the localization using a localization
matrices given by (7.37) with different values of the length-scale parameter l.

7.5 Particle filter
Particle filtering (PF) refers to a group of methods further generalizing the Bayesian
update problem for non-Gaussian pdfs. It includes a range of Monte Carlo techniques
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Figure 7.2: Illustration of the effect of covariance localization; (a) contour plot of spatial
covariance (without localization) of a point denoted with the red circle with the rest
of the polar computational grid; (b)–(d) resulting covariance after application of the
localization using localization matrices given by (7.37) with increasing value of the
length-scale parameter l.

for generating an empirical approximation of posterior p(x
1:t

|y
1:t

) of a state trajectory
x
1:t

= (x
1

, . . . ,x
t

),

p(x
1:t

|y
1:t

) ⇡ 1

N

NX

i=1

�
⇣
x
1:t

� x
(i)

1:t

⌘
. (7.38)

Here, x(i)

1:t

, i = 1, . . . , N , are i.i.d..samples from the posterior p(x
1:t

|y
1:t

) and �(·) is the
Dirac �-function. It comes out from the method of Monte Carlo integration. Expected
value of an arbitrary function f(·) of x

1:t

integrable with respect to p(x
1:t

|y
1:t

) can be
then approximated as

E[f(x
1:t

)|y
1:t

] =

ˆ
f(x

1:t

)p(x
1:t

|y
1:t

)dx
1:t

⇡ 1

N

NX

i=1

f
⇣
x
(i)

1:t

⌘
, (7.39)

and the rate of convergence of this approximation is independent of the dimension of
the integrand [DDFG01].
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In most of real applications we are not able to sample directly from the exact
posterior, however, we can draw samples from a chosen proposal density (importance
function) q(x

1:t

|y
1:t

):

p(x
1:t

|y
1:t

) =
p(x

1:t

|y
1:t

)

q(x
1:t

|y
1:t

)
q(x

1:t

|y
1:t

)

⇡ p(x
1:t

|y
1:t

)

q(x
1:t

|y
1:t

)

1

N

NX

i=1

�
⇣
x
1:t

� x
(i)

1:t

⌘
. (7.40)

Approximation (7.40) can be written in a form of the weighted empirical distribution,

p(x
1:t

|y
1:t

) ⇡
NX

i=1

w
(i)

t

�
⇣
x
1:t

� x
(i)

1:t

⌘
, (7.41)

w
(i)

t

/ p(x(i)

1:t

|y
1:t

)

q(x(i)

1:t

|y
1:t

)
. (7.42)

Under this importance sampling procedure [RK08], the true posterior distribution needs
to be evaluated point-wise only, since (7.41) can be normalized trivially via a constant
c =

P
n

i=1

w
(i)

t

.
In the following text, we will show how to recursively update a pdf given as a

weighted empirical distribution. Following [RAG04], suppose we have a set of samples
approximating posterior p(x

1:t�1

|y
1:t�1

) at time t� 1 and a new vector of measurements
y
t

. We wish to approximate p(x
1:t

|y
1:t

) with a new set of samples. If the proposal
density is chosen to factorize such that

q(x
1:t

|y
1:t

) = q(x
t

|x
1:t�1

,y
1:t

)q(x
1:t�1

|y
1:t�1

), (7.43)

then the new samples x
(i)

1:t

⇠ q(x
1:t

|y
1:t

) can be obtained by augmenting each of the
existing samples x

(i)

1:t�1

⇠ q(x
1:t�1

|y
1:t�1

) with the new state x
(i)

t

⇠ q(x
t

|x
1:t�1

,y
1:t

).
Using the chain rule and the Bayes formula, p(x

1:t

|y
1:t

) can be written in terms of
p(x

1:t�1

|y
1:t�1

), p(x
t

|x
t�1

) and p(y
t

|x
t

), as follows:
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(7.44)

/ p(y
t
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t

)p(x
t

|x
t�1

)p(x
1:t�1

|y
1:t�1

) (7.45)

By substituting (7.43) and (7.44) into (7.42), (7.42) may be written in the following
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recursive form:

w
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Furthermore, if the proposal density is chosen as follows,

q (x
t

|x
1:t�1

,y
1:t

) = q (x
t

|x
t�1

,y
t

) (7.47)

then the proposal density becomes only dependent on the x
t�1

and y
t

. This is par-
ticularly useful in the common case when only an estimate of the marginal posterior
p(x

t

|y
1:t

) is required at each time step. It means, that only samples x
(i)

t

need to be
stored [RAG04] and the marginal posterior density p(x

t

|y
1:t

) can be approximated as

p(x
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, (7.48)
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)
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Using the particles, the mean value x̄
1:t

and the covariance ⌃
1:t

of the posterior
approximation (7.41) can be calculated as follows,

x̄
1:t

=
NX

i=1

w
(i)

t

x
(i)

1:t

, (7.50)

⌃
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x
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1:t

⌘
T

�
. (7.51)

The scheme for sequential evaluation of the weight with incoming observations is
referred to as sampling-importance-sampling (SIS) [ADFDJ03]. Besides the appropriate
choice of the proposal density, successful application of the PF requires more steps,
namely implementation of a re-sampling algorithm, which avoids degeneracy of the
weights.

7.5.1 Degeneracy problem and re-sampling

The variance of weights (7.46) increases during their recursive evaluation. The increase
has a harmful effect on the accuracy and leads to the weights degeneracy, which is
a common problems with the SIS particle filter [RAG04]. The weights degeneracy
means, that after certain number of recursive steps, all but one particle have negligible
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normalized weight which implies sample impoverishment and loss of diversity of the
particles. In the SIS framework, weight degeneracy is unavoidable and has negative
effects. Computational time must be spent on propagation of particles with negligible
weights whose contribution to the approximation of p(x

t

|y
1:t

) is small.
A suitable measure of degeneracy of an algorithm is the effective sample size N

e↵

[RAG04], which can be estimated using normalized weights w
(i)

t

as follows:

N
e↵

=
1

P
N

i=1

(w(i)

t

)2
, (7.52)

When all the weight are approximately of the same value—ideally w
(i)

t

= 1/N , i =

1, . . . , N—then N
e↵

= N . If there is a particle j such that w
(j)

t

= 1, and w
(i)

t

= 0 for
all i 6= j, then N

e↵

= 1. Small values of N
e↵

indicate a severe degeneracy of particle
weights and the particles should be re-sampled.

Re-sampling is a method for elimination of the particles with low importance weights
and copying of those samples with high importance weights. Reproduction of the
best particles brings more focus on the promising parts of the state-space. During re-
sampling, a random measure {x(i)

t

, w
(i)

t

}N
i=1

is replaced with {x(i)⇤
t

, 1/N}N
i=1

with uniform
weights [RAG04]. Re-sampling is not deterministic. The new set of particles and
weights is generated in a way that the probability of sampling a particle x

(j)

t

from
discrete approximation of p(x

t

|y
1:t

) is given by its normalized importance weight w(j)

t

:

Pr
⇣
x
(i)⇤
t

= x
(j)

t

⌘
= w

(j)

t

, i = 1, . . . , N. (7.53)

The resulting sample is an i.i.d. sample from the discrete approximation of density
p(x

t

|y
1:t

), where the weights of all the particles are uniform.
Illustration of the basic idea behind the re-sampling is in Figure 7.3. The piecewise-

constant blue line denotes the cumulative weight
P

i

w(i) of N = 10 particles. Particles
with high weights have a high probability being re-sampled. The higher the weight w(i)

t

,
the longer the interval

I =

"
i�1X

s=1

w
(s)

t

,
iX

s=1

w
(s)

t

!
, i = 1, . . . , N, (7.54)

and the higher the probability that random samples u
i

⇠ U [0, 1), denoted with dashed
lines, will be from I. In the figure, particle 1 was copied twice, particle 2 once, particle 5
for three times, particle 6 once, particle 8 twice and particle 10 once. These 10 samples
with uniform weights represent the re-sampled empirical density.

Example of a re-sampling algorithm is the systematic re-sampling given in Algo-
rithm 7.3, where we have to sample only one number from U [0, 1). Modification of
the SIS algorithm with re-sampling is called sampling-importance-resampling (SIR),
see Algorithm 7.4. More on re-sampling algorithms can be found, e.g., in [DC05].



CHAPTER 7. BAYESIAN METHODS 89

Figure 7.3: Illustration of basic principle of re-sampling in PF. The piecewise-constant
blue line denotes the cumulative weight

P
i

w(i) of N = 10 particles. The higher the
weight w(i), the longer the interval I (7.54) and the higher the probability that random
samples u

i

⇠ U [0, 1), denoted with dashed lines, are from I. Particle 1 was copied
twice, particle 2 once, particle 5 for three times, particle 6 once, particle 8 twice and
particle 10 once.

7.5.2 Choice of proposal density

The choice of proposal density q(x
1:t

|y
1:t

) plays a crucial role in particle filtering. There
is no easy prescription for choosing a good proposal density, nevertheless, we can sum-
marize its typically desirable properties [OB92]:

• It should have convenient Monte Carlo properties, i.e., it should be easy to draw
random samples from it.

• The tails of q(·) should not be sharper than the tails of p(·). Otherwise, approxi-
mation of p(·) may have a large variance or even fail to converge.

• Proposal density q(·) should mimic p(·) well.

The most straightforward choice of the proposal density in the recursive scheme (7.46)
is the state transition pdf

q(x(i)

t

|x(i)

t�1

,y
t

) = p(x
t

|x
t�1

). (7.55)

Under the choice (7.55), the recursion of weights (7.48) is given by

w
(i)

t

/ w
(i)

t�1

p(y
t

|x(i)

t

). (7.56)

However, this popular choice is rather sub-optimal.
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Algorithm 7.3 Systematic re-sampling.
1. Generate N increasingly ordered numbers

uj =
(j � 1) + ũ

N
, j = 1, . . . , N,

where ũ is sampled from uniform distribution U(0, 1).
2. Produce new set of particles. Particle x

(i)
t is copied ni-times, where

ni is the number of uk 2
"

i�iX

s=1

w(s)
t ,

iX

s=1

w(s)
t

!
.

More advanced approaches are based on adaptive selection of the proposal, where
we assume a parameterized form of the proposal in time t and estimate its parameters
using weights w

(i)

t

[ADFDJ03, ADH10]. The approach can be extended for estimation
of the proposal of the whole state trajectory up to time t. From the re-estimated
proposal q (x

1:t

|y
1:t

) we can generate new population of trajectories x(i)

1:t

and recompute
the weights from the beginning up to time t. For instance, given that the proposal
density is assumed to be a multidimensional Gaussian pdf, we use the weights for
estimation of its mean and covariance matrix. This example is a simple choice and
more elaborated proposal densities can be constructed, e.g., a parametrized proposal
in the form of a Gaussian mixture estimated using the EM algorithm [DLR+77].

The PF algorithm with an adaptive selection of the proposal density is summarized
in Algorithm 7.5. In Step 2, weights w

(i)

t

are computed using up-to-now observation
y
1:t

. The weights are used for re-estimation of the proposal density q(x
1:t

|y
1:t

) in Step
3. Up-to-now trajectories of particles are discarded and new trajectories are sampled
from the corrected proposal in Step 4. The new trajectories are augmented with the
forecasts of the state values for the next time step evaluated using the state transition
density. In Step 5, we increment the time index and proceed to Step 2, where the
weights are recomputed using the new state trajectories.

7.5.3 Practical evaluation of weights

7.5.3.1 Evaluation of weighs in logarithmic scale

In practice, it is beneficial to evaluate non-normalized weights w̃
(i)

t

in a logarithmic
scale. In the following text, let

ln w̃(i)

t

= ln(w̃(i)

t

), i = 1, . . . , N.

Before normalization, we subtract the value of the maximum weight w̃max

t

from all the
weights, as follows,
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Algorithm 7.4 Sampling–importance–re-sampling algorithm (particle filter).

1. Initialization. For i = 1, . . . , N initialize particles x
(i)
0|�1 ⇠ p(x0) and set t := 0.

2. PF data update: Evaluate the importance weights

w̃(i)
t = w(i)

t�1p
⇣
yt|x(i)

t|t�1

⌘
, i = 1, . . . , N,

and normalize w(i)
t = w̃(i)

t /
PN

j=1 w̃
(j)
t .

3. Re-sampling: Evaluate estimate of effective sample size Ne↵ . If Ne↵ < NThr, where NThr is a

given threshold, sample N particles, with replacement, according to

Pr
⇣
x
(i)
t|t = x

(j)
t|t�1

⌘
= w(j)

t , i = 1, . . . , N,

and set uniform weights w(i)
t = 1

N , i = 1, . . . , N.

4. PF time update: Predict new particles according to

x
(i)
t+1|t ⇠ p

⇣
xt+1|t|x(i)

t|t

⌘
, i = 1, . . . , N.

5. Set t := t+ 1 and iterate from step 2.

Algorithm 7.5 Particle filter with adaptive selection of proposal density.

1. Initialization. For i = 1, . . . , N initialize particles x
(i)
0 ⇠ p(x0) and set t := 0.

2. Evaluation of normalized weights w(i)
t

w(i)
t /

p
⇣
x
(i)
1:t|y1:t

⌘

q
⇣
x
(i)
1:t|y1:t

⌘ .

3. Adaptive selection of proposal density q(x1:t|y1:t) for the next time step using weights w(i)
t and

particle trajectories x
(i)
1:t.

4. Sample new trajectories from for the next time step:

(a) x
(i)
1:t+1 ⇠ q(x1:t+1|y1:t), where q(x1:t+1|y1:t) = q(x1:t|y1:t)p(xt+1|xt).

(b) Reset particle weights w(i)
t = 1/N , i = 1, . . . , N .

5. Set t := t+ 1 and iterate from step 2.

ln w̃(i)⇤
t

= ln w̃(i)

t

� lnw̃max

t

= ln

 
w̃

(i)

t

w̃max

t

!
,

where ln w̃max

t

= max
i2N ln w̃(i)

t

.
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This procedure ensures, that the weights are better scaled and the overall algorithm
is numerically more stable. After exponentiation, the maximum weight is equal to 1 and
there is always at least one particle which has a reasonable weight after normalization.
The procedure does not affect the resulting normalized weights:

w
(i)⇤
t

=
w̃

(i)⇤
tP

N

j=1

w̃
(j)⇤
t

=

w̃

(i)

t

w̃

max

t

P
N

j=1

w̃

(i)

t

w̃

max

t

=

w̃

(i)

t

w̃

max

t

1

w

max

t

P
N

j=1

w̃
(j)

t

=
w̃

(i)

tP
N

j=1

w̃
(j)

t

= w
(i)

t

.

7.5.3.2 Effective evaluation of Gaussian likelihood

Let the likelihood function given by the observation model (7.4) be of a multidimensional
Gaussian type, p(y

t

|x
t

) = N (H
t

(x
t

),Z
t

), more specifically

p(y
t

|x
t

) = (2⇡)�
N

y

2 (detZ
t

)�
1

2 exp


�1

2

⇣
(y

t

�H
t

(x
t

))TZ�1

t

(y
t

�H
t

(x
t

))
⌘�

.

A logarithmic weight is then

ln w̃
t

= �0.5
�
ln detZ

t

+ vT

t

Z�1v
t

�
.

Let F
t

be the lower triangular Cholesky factor of Z
t

. It can be shown [GVL96], that it
holds

ln w̃
t

= ln

N

yY

i=1

(F
t

[i, i])2 + ||F�1

t

v
t

||2, (7.57)

where F
t

[i, i], i = 1, . . . , N
y

, are diagonal elements of F
t

and || · || denotes the Euclidean
2-norm.

7.6 Marginalized particle filter
The main advantage of importance sampling is its generality. Particle filters are capable
of approximating an arbitrary density via empirical density at the price of high com-
putational cost, which is prohibitive in high-dimensional problems. This obstacle can
be overcome in the cases, where the structure of the model (7.3)–(7.4) allows analytical
marginalization over a subset, xc

t

, of the full state vector

x
t

=


xc

t

xp

t

�
. (7.58)

Using the chain rule and the factorization (7.58), the posterior p(x
1:t

|y
1:t

) has the
form

p (x
1:t

|y
1:t

) = p (xc

1:t

|xp

1:t

,y
1:t

)| {z }
analytical filter

p (xp

1:t

|y
1:t

)| {z }
PF

, (7.59)
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where p (xc

t

|xp

1:t

,y
1:t

) is analytically tractable, while p (xp

1:t

|y
1:t

) is not [DDFG01, SGN05],
and we use particle filter for its approximation. This technique is referred as Rao-
Blackwellization [DDFG01]. We replace the term p (xp

1:t

|y
1:t

) in (7.59) by a weighted
empirical distribution, in analogy to (7.40), yielding

p (x
1:t

|y
1:t

) ⇡
nX

i=1

w
(i)

t

p
⇣
xc

1:t

|xp,(i)

1:t

,y
1:t

⌘
�
⇣
xp

1:t

� x
p,(i)

1:t

⌘
, (7.60)

w
(i)

t

/
p
⇣
x
p,(i)

1:t

|y
1:t

⌘

q
⇣
x
p,(i)

1:t

|y
1:t

⌘ . (7.61)

Note that now we only have to sample from the space of xp

t

. Recursive evaluation is
achieved by application of the Bayes rule

p (x
1:t

|y
1:t

) / p(y
t

|x
t

)p(x
t

|x
t�1

)p (x
1:t�1

|y
1:t�1

) , (7.62)

and substitution of (7.60) in place of p(x
1:t

|y
1:t

) and p(x
1:t�1

|y
1:t�1

). Comparing ele-
ments in the summations on both sides of equation (7.62), we obtain:

w
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⇣
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p,(i)
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, (7.63)
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. (7.64)

The requirement of analytical tractability of integrations in (7.64) is always fulfilled
when (7.1) contains a linear-Gaussian part, [SGN05], giving rise to the marginalized
particle filter (MPF) with the Kalman filter. Resulting approximation of the posterior
pdf (7.60) then becomes a weighted sum of Gaussian pdfs

p (x
1:t

|y
1:t

) ⇡
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; x̄c,(i)

t

,P
(i)

t

⌘
�
⇣
xp

1:t

� x
p,(i)

1:t

⌘
,

where x̄
c,(i)

t

and P
(i)

t

are mean values and covariance matrices of Gaussian distributions
N (xc

t

; x̄c,(i)

t

,P
(i)

t

) attached to particles x
p,(i)

t

.
Using the results from Appendix A, the minimum mean square error estimates of the

expected value x̂c

t

and covariance P
t

of the resulting posterior mixture p(xc

t

|xp

1:t

,y
1:t

)
are given, as follows:

x̂c

t

=
NX

i=1

w
(i)

t

x̄
c,(i)

t

, (7.65)
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Illustration of a 2-dimensional state x = [x
1

, x
2

]T estimated using MPF is in Fig-
ure (7.4). Resulting joint estimate of the posterior pdf is in the linear-Gaussian part
of the state, x

1

, estimated using the optimal Kalman filter and approximated using a
particle filter in the non-linear and/or non-Gaussian part of the full state vector, x

2

.
Tractable solution also exists for discrete-variable models [TBF05] and models based

on conjugate statistics [SOvG10]. However, the range of models amenable to this
approach is still rather small and does not contain any models suitable for large-scale
and non-linear problems.

Figure 7.4: Illustration of a 2-dimensional state x = [x
1

, x
2

]T estimated using MPF.
Resulting joint estimate of the posterior pdf is in the linear-Gaussian part of the state,
x
1

, estimated using the optimal Kalman filter and approximated using a particle filter
in the non-linear and/or non-Gaussian part of the full state vector, x

2

.



Chapter 8

Framework for Tuning of Ensemble

Filters

8.1 Modification of MPF algorithm for suboptimal
conditional filters

Since the optimal Kalman filter is not suitable for large scale and non-linear prob-
lems, it would advantageous to substitute it with an approximate filter within MPF.
We propose to relax the requirement of exact marginalization in (7.63) and replace
it by an approximation. We note that given numerical values of xp,(i)

t

,x
p,(i)

t�1

, equation
(7.64) is equivalent to the normalizing constant of a Bayesian filter (7.5). Hence, any
Bayesian filter that is capable of evaluating its normalizing constant can be used to
approximate (7.64). What results is an algorithm equivalent to marginalized particle
filtering where the analytical Kalman filters are replaced by approximate conditional
filters. Specifically, the following filters interact via Algorithm 8.1:

1. Conditional filter on variable xc

t

, treating xp

t

as an observation, i.e.,

p(xc

t

|xp

1:t

,y
1:t

) =
p(y

t

,xp

t

|xc

t

,xp

1:t

)p(xc

t

|xp

1:t�1

,y
1,t�1

)

p(y
t

,xp

t

|xp

1:t�1

,y
1,t�1

)
. (8.1)

2. Particle filter on variable xp, that handles sampling from the proposal density
q(xp

t

|xp

t�1

,y
1:t

) and re-sampling. Each particle is attached to one conditional
filter.

In this general form, the algorithm is rather unspecific. This is due to the fact that
arbitrary conditional filters can be combined with arbitrary particle filtering approaches.
Therefore, we consider Algorithm 8.1 to represent a framework for designing specific
filtering variants. The word framework is used to distinguish this approach from the
analytical MPF.

The key property of the MPF is partitioning of the state variable into two parts.
In the original exact formulation, the choice of partitioning is fully determined by

95
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Algorithm 8.1 General MPF framework.

1. Generate initial particles x
p,(i)
0 , i = 1, . . . , N , and set initial statistics of all associated conditional

filters.

2. For each new data record yt do:

(a) Sample new value of particles x
p,(i)
t , i = 1, . . . , N , and update statistics of all associated

conditional filters via (8.1).

(b) Compute weights (7.63) of all particles and their associated conditional filters.

(c) If the number of efficient particles, Ne↵ , is lower than the chosen threshold, re-sample the

particles.

tractability of the Bayes rule (7.5). Finding a partitioning in the context of environ-
mental modeling where the state variables typically obey the same equations is harder.
However, the relaxed formalization of Section 7.6 allows to interpret xp

t

not as a parti-
tion of the full state but rather as an augmentation of the original state xc

t

by nuisance
parameters. What results is a framework for on-line tuning of existing filters.

The general algorithm of tuning is described in Algorithm 8.1, specific variants arise
for the following choices:

1. Choose a preferred variant of the conditional filter (e.g. a variant of ensemble
filter) estimating xc

t

,

2. Choose tuning parameters of interest, xp

t

, use them to augment the original state
xc

t

via the chosen model of their evolution, p(xp

t

|·),
3. Choose a proposal density q(xp

t

|·), e.g., the evolution model, q(xp

t

|·) ⌘ p(xp

t

|·).
Different choices in each of the points above will lead to different properties of the
resulting filter. The number of possible combinations of these choices is enormous, and
finding guidelines for the best option in a given application context is a task for further
research. In some applications, a physically motivated evolution model of xp

t

may be
found, while heuristic or expert-chosen models may be more appropriate in others.

8.2 Estimation of inflation factor, observation error
variance, and length-scale parameter

We focus on ensemble filters, which are suitable for large-scale problems arising in spa-
tial data analysis. Generally, ensemble methods tend to underestimate model error,
which can significantly decrease filtering performance or even result in divergence. The
techniques for compensating small ensemble issues described in Section 7.4.3 have tun-
ing parameters that typically need to be set-up experimentally. Substantial effort has
been put into on-line estimation of the inflation factor alone, [And07a], or in tandem
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with the observation error [LKM09]. In this Section, we approach the same problem
using the MPF framework with the following specific choices.

1. We have chosen the EnSRF with multiplicative inflation (7.35) as our conditional
filter.

2. The unknown tuning parameters regarding model error are: the time-variant in-
flation factor �

t

and the time-varying length-scale parameter l
t

of the covariance
localization function. We can include also different types of parameters like magni-
tude of observation error, r

t

, for all observations, i.e., R
t

= r
t

I. The augmentation
of the state vector is then xp

t

= [�
t

, r
t

, l
t

]T.

3. The proposal density is chosen as p(xp

t

|xp

t�1

).

Augmentation xp

t

is evolved using
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t�1

) = p(�
t

|�
t�1
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t�1

)p(l
t

|l
t�1

),

where, evolution of the parameters is modeled by truncated Gaussian random walks,
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p(l
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) = tN (l
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, �2

l

, [0,1]).

Scalar parameters �
�

, �
r

, and �
l

denote the spread of the random walks, respectively.
Non-negativity of all considered parameters motivates truncation of support of the
random walks.

Under the choice of proposal density (7.63) reduces to

w
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where p(y
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) defined by (7.24) is now explicitly conditioned on the unknown
parameters:
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Resulting algorithm defines an adaptation scheme related to other approaches used
in the literature. Specifically, (8.4) is the same equation that was used for maximum
likelihood estimation of covariance parameters [Dee95]. Maximization of this function is
achieved, e.g., via simplex methods [MH00]. In our approach, (8.4) serves as a likelihood
function for Bayesian estimation of the tuning parameters, x

p,t

. The variance of the
random walk then models our belief in time-variability of the tuning parameters. In
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the special case of stationary parameters, (i.e., �
�

= �
r

= �
l

= 0), Algorithm 8.1
is reduced to a parallel run of N ensemble filters, each of which is accumulating the
product of p(y

t

|y
1:t�1

,x
p,(i)

t

) in each step. After several hundreds of steps, majority of
the weights will converge to zeros and one of them will converge to one. Such behavior
is known as sample impoverishment in the particle filtering literature. The convergence
of probability mass to a single point may be useful for finding the best tuned values
in off-line phase. However, this degeneracy is undesirable for on-line application, and
non-zero variances of random walks (8.2) have to be used.

For non-stationary parameters, each of the N filters follows a random walk of the
tuning parameters. The re-sampling operation removes filters that diverged into un-
likely regions, and replaces them by copies of the filters with parameters that are more
likely. The area of higher likelihood is then explored by more filters in detail. This of
course requires to run N ensemble filters in parallel which is computationally expensive.
However, the key advantage of this approach is that it is able to optimize non-convex
and multi-modal likelihood functions.

8.3 Simulation studies

8.3.1 Lorenz-96 model

To demonstrate versatility of the method, we test the MPF approach in the Lorenz-96
model by [LE98] which has been widely used in simulation studies. The model is given
by

dx
j

dt
= x

j�1

(x
j+1

� x
j�2

)� x
j

+ F, (8.5)

where F is the model forcing and x
j

are variables forming a cyclic chain. We define
x�1

= x
J�1

, x
0

= x
J

and x
J+1

= x
1

to make (8.5) meaningful for all values of j =
1 . . . J . We use 40 variables, and F = 8 for the strength of forcing. The model (8.5)
can be integrated forward with the fourth-order Runge–Kutta scheme. The system is
computationally stable for step of 0.05 non-dimensional units, which is also the step of
the analysis. All the experiments are performed as twin experiments.

8.3.2 Stationary parameters

To create a baseline for comparison of adaptive tuning strategies, we performed parallel
run of EnSRFs for fixed values of �, l selected on a rectangular grid, as in [WH02]. From
Bayesian point of view, this setup corresponds to estimation of stationary parameters:

p(�, l|y
1:t

) / p(�, l)
tY

j=1

p(y
j

|y
1:j�1

,�, l) (8.6)

where p(�, l) is a prior probability density on discrete values of �, l at the grid points,
which is uniform, and p(y

j

|y
1:j�1

,�, l) is given by (8.4). For numerical stability, (8.6)
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RMSE marginalized log-likelihood
rank inflation localization mean value inflation localization sum
#1 1.04 7.0 0.2074 1.05 7.0 -2079401
#2 1.04 6.0 0.2075 1.05 8.0 -2079483
#3 1.05 8.0 0.2076 1.04 6.0 -2079513

Table 8.1: Best stationary choices of nuisance parameters for EnSRF according to two
criteria.

is often computed in logarithmic scale where the product is replaced by the sum of
marginal log-likelihoods.

The observation data are generated from the perfect model scenario where the “true”
state was generated by integrating the Lorenz-96 model (8.5) for 100000 steps and ob-
servations are generated from the true state by addition of zero-mean Gaussian noise
with variance r = 1. The analysis was performed by the EnSRF with covariance local-
ization constructed using a compactly supported fifth-order piecewise rational function
given by (7.37) with length-scale parameter l. The results of a simulation experiment
with 132 EnSRFs with 15 ensemble members, r = 1, � = [1.0, 1.1, . . . , 1.10], and
l = [0, 1, . . . , 11] are displayed in Figure 8.1 in two modalities. First, the traditional
RMSE is computed for each couple of parameters,

RMSE =
1

99000

100000X

t=1000

r
1

40
(x

t

� x̂c

t

)T(x
t

� x̂c

t

), (8.7)

for the MPF algorithm. Second, the sum of marginal log-likelihoods (8.6) within the
same time intervals is displayed for illustration.

Note that the contours of the marginal log-likelihood (8.6) correspond closely to the
contours of the RMSE. This suggests that the marginal likelihood p(y

⌧

|y
1:⌧�1

,�, l) is a
good measure to optimize for the best RMSE in the cases where the true state values
are not known. The three best choices within each modality are given in Table 8.1.
Note that two choices—� = 1.05, l = 8 and � = 1.04, l = 6—are in the top three for
both criteria. The relative differences are rather small, however, in terms of normalized
posterior probability (8.6) the best parameters in Table 8.1 are e82 times more likely
that the second best.
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Figure 8.1: Estimation of stationary parameters on rectangular grid. Top: marginal
log-likelihood (8.6) of the tuned parameters �, l. Labels of the contour lines denote
difference from the maximum which is marked by a circle. Bottom: Time average of
RMSE (8.7).

8.3.3 Adaptive estimation in perfect model scenario

The same observation data used for estimation of stationary parameters were used to
estimate the time-varying parameters in two different scenarios:

Scenario (i): fixed r
t

= 1.0, estimated �
t

, l
t

, i.e., xp

t

= [�
t

, l
t

]T,

Scenario (ii): estimated r
t

, l
t

,�
t

, i.e., xp

t

= [�
t

, r
t

, l
t

]T.
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Figure 8.2: Position of the particles �(i)

t

, l
(i)

t

denoted by ’+’ on the background of
stationary contours of marginal log-likelihood.

The particle filter is using multinomial re-sampling [GSS02] and N
e↵

= 0.8N . The
variances of random walks (8.2) for the MPF algorithm were chosen as

�
�

= 0.01�(i)

t�1

+ 0.0001,

�
l

= 0.01l(i)
t�1

+ 0.0001, (8.8)

�
r

= 0.005r(i)
t�1

+ 0.0001,

The prior density of the tuning parameters is chosen as uniform on support p(�
y,0

) =
U(0.1, 4), p(�

0

) = U(1.0, 1.10), p(l
0

) = U(0.11, 11.11).
Results of simulations for different number of particles and both scenarios are dis-

played in Tables 8.2 and 8.3, respectively. Using particles and their weights, estimates
of the parameters are evaluated using

x̄p

t

=
nX

i=1

w
(i)

t

x
p,(i)

t

.

In accordance with [WH02, LKM09], we ignore the first 1000 steps and report the results
only for the subsequent steps. Spatial distribution of the particles for �

t

, l
t

in scenario
(i) at time steps t = 1, 50000, 100000 is displayed in Figure 8.2 on the background of
contours for the stationary marginal log-likelihood from Fig 8.1. We note that alignment
of the particles in the middle of the stationary contour at t = 50000 is a coincidence,
in majority of all other time steps the cloud is a bit off the stationary optimum.

As expected, the RMSE is steadily decreasing with increasing number of particles
for both considered scenarios. Note that for N = 10 and higher, the MPF filter achieves
better performance than the best-tuned filter. In the more complex scenario of tuning
all three parameters, Table 8.3 the MPF algorithm achieves only negligible increase of
the RMSE over the scenario with known observation variance r.
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Results for scenario (i)

N
mean
RMSE

std
RMSE

mean
�̄

t

std �̄
t

mean
l̄
t

std l̄
t

mean
r̄
t

std r̄
t

5 0.2089 0.0521 1.0334 0.0080 5.6942 0.9072 1.0 0.0
10 0.2071 0.0510 1.0337 0.0064 6.3431 0.9229 1.0 0.0
20 0.2065 0.0523 1.0331 0.0061 6.2933 0.5005 1.0 0.0

Table 8.2: Adaptive tuning of xp

t

= [�
t

, l
t

]T and the resulting analysis RMSE error,
averaged over assimilation steps between t = 1000 and t = 100000, std denotes standard
deviation of the estimates from the mean over time.

Results for scenario (ii)

N
mean
RMSE

std
RMSE

mean
�̄

t

std �̄
t

mean
l̄
t

std l̄
t

mean
r̄
t

std r̄
t

5 0.2094 0.0521 1.0317 0.0075 5.6154 0.7289 1.0059 0.0215
10 0.2072 0.0509 1.0354 0.0058 6.7455 0.9541 1.0031 0.0230
20 0.2064 0.0511 1.0355 0.0055 6.7182 0.9202 1.0018 0.0193

Table 8.3: Adaptive tuning of xp

t

= [�
t

, r
t

, l
t

]T and the resulting analysis RMSE error,
averaged over assimilation steps between t = 1000 and t = 100000, std denotes standard
deviation of the estimates from the mean over time.

We note that good performance of the adaptive tuning was achieved for as low as
10 particles. This result is especially promising since it suggests that even more chal-
lenging assimilation scenarios can be handled at comparable computational complexity.
Addition of one extra tuning parameter in second scenario had negligible impact on the
performance.

8.3.4 Model with random perturbations

For comparison with [LKM09], we tested the MPF algorithms on data simulated with
model (8.5) with additive random perturbations

dx
j

dt
= x

j�1

(x
j+1

� x
j�2

)� x
j

+ F + ↵e
t

, (8.9)

where e
t

is Gaussian distributed noise with zero-mean and unit variance. The observed
data were generated using model (8.9) with ↵ = 4 for 100000 steps. The same setup
of the EnSRF as in the previous experiments was used, including the same initial
conditions. Results for estimation for the 100000 steps are displayed in Table 8.4.
Since parameter ↵ is stationary, the time evolution of the parameter estimates �̄

t

, l̄
t

using MPF is reaching the stationary values in Table 8.4 after the initial convergence
period.

Note that the additive noise was compensated by higher values of �̄
t

and lower values
of l̄

t

than that of the perfect model, Table 8.3. This is in agreement with findings of
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Results for imperfect model scenario, ↵ = 4
mean RMSE std RMSE mean �̄

t

std �̄
t

mean l̄
t

std l̄
t

mean r̄
t

std r̄
t

0.3563 0.0542 1.1944 0.0230 3.0810 0.8198 1.0055 0.0618

Table 8.4: Adaptive tuning of xp

t

= [�
t

, l
t

, r
t

]T for system with random model errors
(8.9) with variance ↵ = 4. The resulting analysis RMSE error is averaged over assim-
ilation steps between t = 1000 and t = 100000, time averages of parameter estimates
are displayed in tandem with standard deviation of the estimates from the mean over
time. Both algorithms were run with N = 10 and N

e↵

= 0.8N .

[LKM09] and also expected because ↵ is increasing the background covariance (reflected
by higher inflation) and decreasing correlation between elements of the state vector
(reflected by lower length-scale).

For testing the tracking properties of the MPF algorithms, we have designed a
scenario with time varying ↵

t

according to a triangular profile. Posterior densities of
the parameters obtained using the MPF algorithm are displayed in Fig. 8.3. For this
experiment, we increased the variances of random walks (8.2) to

�
�

= 0.01�(i)

t�1

+ 0.001,

�
l

= 0.01l(i)
t�1

+ 0.001,

�
r

= 0.01r(i)
t�1

+ 0.01.

This experiment confirms the trend of increasing �
t

and decreasing l
t

with increasing
↵
t

. Note that when ↵ returns to the stationary values, so do the estimates of the tuning
parameters.

8.4 Summary
The purpose of this chapter is to present marginalized particle filtering (also known
as Rao-Blackwellized filtering) as an attractive tool for research of data assimilation
methods in environmental modeling and especially for tuning of ensemble filters.

The method is based on partitioning of the state (or unknown parameters) into two
parts: (i) unknowns estimated by a conditional filter, and (ii) unknowns estimated by
a particle filter. The original MPF assumes that the conditional filter is analytically
tractable, which allows to prove advantages over a pure particle filter. In this chapter,
we propose to replace analytical filters by ensemble filters. The resulting algorithm is
loosing its theoretical advantages, however it allows to address the problem of tuning
of ensemble filters. We have shown that the number of particles needed to achieve
acceptable performance is rather low, for example 10 particles are sufficient to achieve
on-line tuning of the inflation factor and the length-scale parameter in the EnSRF for
the 40-dimensional Lorenz-96 model. Furthermore, we have shown that the approach
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Figure 8.3: Estimation of system (8.9) with time-varying ↵
t

of triangular profile dis-
played at the bottom. Posterior densities of the parameters are displayed via their mean
value (blue line) and region between minimum and maximum value of the particles (gray
area).



CHAPTER 8. FRAMEWORK FOR TUNING OF ENSEMBLE FILTERS 105

easily extends to estimation of unknown variance of the observation error and poten-
tially any other tuning parameters. Once again, 10 particles were sufficient to achieve
performance comparable to that of the best-tuned filter.

Computational cost of the MPF framework is high since it requires running N filters
in parallel. We expect that advantages of parallel evaluation of ensemble filters over
adaptation of a single ensemble filter will become apparent in even more demanding
scenarios. Computational complexity may prevent its operational use, however, it may
be an important tool for gaining insight into the ensemble filters in the same spirit as
in [And07b].

The potential of the framework has been demonstrated on on-line tuning of the
ensemble filters. However, it is not the only scenario where it can be used. Since
posterior density of the MPF is a mixture of Gaussians, the approach may be adapted
for estimation of Gaussian mixture filters that have been studied, e.g. by [BSN03]. More
work is required to discover full potential of the method. The open problems include
justified design of suitable models of parameter evolution and approximations reducing
the computational cost of the MPF. However, the existence of the exact solution allows
to design the necessary computational simplifications to resemble its behavior.

More experiments and a heuristic simplification suitable for certain assimilation
scenarios can be found in [ŠH11].



Chapter 9

Application of Bayesian DA in the

Early Phase

9.1 Problem statement
Assume an accident in a nuclear power plant followed by an atmospheric release of
radionuclides. After the release, there is a radioactive plume moving over the terrain.
Urgent protective measures must be introduced as soon as possible to protect the pub-
lic from the harmful effects of ionizing radiation. These are planned with regards to
expected exceeding of regulatory radiation limits given by the law. Decision making
regarding countermeasures is supported with radiological measurements from terrain.
However, particularly in the first hours of the accident, the measurements are sparse
and it is not possible to base prognoses of radiation situation just upon them solely.
For determination of affected areas and estimation of radiation levels in a wider scale,
atmospheric dispersion models (ADMs) are used. Given a meteorological forecast and
values of other important control variables of an ADM, the model evaluates a prediction
of spatial and temporal distribution of radionuclides on a computational grid in terms
of activity concentration in air. It is an important radiological quantity which can be
used for calculation of other quantities like deposition and doses. Under the term con-
trol variables we understand a set of inputs to the model, which parameterize initial
conditions and important physical processes influencing the spreading of the pollutants,
e.g., information on the source term (composition and magnitude of the release and its
dynamics) and meteorological inputs.

In reality, our knowledge of the release conditions is limited. Typically, meteorologi-
cal inputs are set using a numerical prediction model and other control variables are set
with expert-provided values. This subjective choice can introduce significant errors into
the resulting predictions. What is more, the chaotic nature of the atmosphere makes
impossible to obtain accurate results using a model of a finite complexity and evaluated
with finite computational resources. In other words, inaccurate model initialized with
erroneous inputs can not provide reliable predictions. Relying on them can lead in fatal
errors in the countermeasures planning. Inherent uncertainty of the problem is not

106
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the only factor making the forecasting in the early phase challenging. There are also
strict time constraints caused by the problem dynamics and the urgent need of reliable
information. There must be made a compromise between the time spent on evaluation
of the dispersion model and its accuracy.

Using data assimilation we can tune uncertain model inputs in a way that the model
output fits the available measurements. The number of variables is potentially large
but the most important subset can be identified for a specific scenario and a given ADM
[ET04, PHP07]. Recent advances in this field have shown great promise in improving
model performance through optimal calculation of emission and meteorological inputs
by a systematic comparison of observations and modeled concentrations. These im-
proved estimates may in turn be used as inputs to long- and short-range atmospheric
dispersion models, resulting in greatly improved efficiency of the countermeasures.

In this chapter, we describe a new data assimilation method based on particle fil-
tering for estimation of important control variables of a parameterized ADM.

9.2 Proposed data assimilation methodology
We propose a new data assimilation methodology based on particle filtering for re-
duction of uncertainty in atmospheric dispersion modeling during the early phase of a
radiation accident. We focus on the parametrized ADMs, where selected control vari-
ables are treated as random and we attempt to select their most plausible values in
consecutive time steps using available measurements.

9.2.1 State evolution model

Parametrized ADMs can be understood as deterministic functions of the control vari-
ables ✓ 2 RN✓ . It means, that all the uncertainty is assumed to be in values of the
variables, not in the parametrization itself. Trajectory ✓

1:t

represents values of control
variables of the model up to time t and fully determines its propagation. Vector ✓

t

ag-
gregates values of control variables used for model propagation between time instances
t and t+1. Physics behind the dispersion modeling motivates us to distinguish between
two types of control variables, where each type must be treated differently:

Mutable control variables: Values of mutable control variables can—and are ex-
pected to—change in respective time steps. Typically, control variables describing
meteorological conditions must be treated as mutable in order to correctly simu-
late stochastic fluctuations of the wind field and other atmospheric phenomena.

Immutable control variables: Values of immutable control variables must the same
along the whole state trajectory. Typical representative is the magnitude of re-
lease in the case of an instantaneous releases. As the initial magnitude of release
affects the deposition, doses and other radiological quantities during the whole
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propagation of the plume, its variation would violate the law of activity conser-
vation. Neglecting the radioactive decay, the integral of activity over time and
space must be equal to the initial value in all time steps. In context of the
classical estimation theory the immutable control variables denote the stationary
parameters.

We want to estimate the state trajectory ✓
1:t

—from the Bayesian point of view, evaluate
the posterior p(✓

1:t

|y
1:t

)—in successive time steps t = 1, 2, . . .. Let the state ✓
t

be
comprised of two parts, the immutable variables ⌘

t

and the mutable variables ⌫
t

:

✓
t

=


⌘
t

⌫
t

�
. (9.1)

We assume that ⌘
t

and ⌫
t

are mutually independent. Since the immutable variables are
not allowed to change during the model propagation, we can evolve only the mutable
part of ✓

t

and the state transition pdf has then the form:

p(✓
t

|✓
t�1

) = p(⌘
t

,⌫
t

|⌘
t�1

,⌫
t�1

)

= p(⌘
t

|⌘
t�1

)p(⌫
t

|⌫
t�1

) (9.2)
= �(⌘

t

� ⌘
1

)p(⌫
t

|⌫
t�1

). (9.3)

9.2.2 Observation operator

Measurements are assumed to be normally distributed with covariance matrix R
t

and
mutually independent given the state trajectory ✓

1:t

,

y
t

⇠ N (H(✓
1:t

),R
t

) , (9.4)

where H(·) is an observation operator. It performs two tasks. Firstly, the observa-
tion operator relates measured radiological quantity and an output quantity given by
the dispersion model. Secondly, it performs spatial interpolation in the case that the
computational and receptor grids are not aligned. Given a radiological quantity evalu-
ated on a computational grid S

t

, observation operator yields a vector of measurements
y
t

2 RN

y evaluated in a set of receptor points SR

t

= {sR
1,t

, . . . , sR
N

y

,t

}. Generally, the set
SR

t

can vary between time steps. This would be of a particular importance in the case
of measurements provided by the moving mobile groups. In the case of a stationary
radiation monitoring network we can treat the observation operator as time invariant,
i.e., H

t

= H.

9.2.3 Data assimilation algorithm

The posterior pdf is approximated using particle filter,
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p(✓
1:t

|y
1:t

) ⇡
NX

i=1

w
(i)

t

�
⇣
✓
1:t

� ✓(i)
1:t

⌘
, w

(i)

t

/
p
⇣
✓(i)
1:t

|y
1:t

⌘

q
⇣
✓(i)
1:t

|y
1:t

⌘ , (9.5)

Particles are represented with trajectories ✓(i)
1:t

parameterizing N simultaneously prop-
agated dispersion models.

If the proposal density

q
⇣
✓(i)
1:t

|y
1:t

⌘
= q

⇣
⌘(i)

1

|y
1:t

⌘
q
⇣
⌫(i)

1:t

|y
1:t

⌘

is badly chosen, the performance of the filter would be rather poor. Application of
sequential evaluation of weights would results in a computationally ineffective scheme,
where the computational resources would be wasted on propagation of particles with
small weights. Enormous number of particles would be needed to achieve a good per-
formance.

Significant improvements can be achieved by application of the adaptive proposal se-
lection methodology described in Section 7.5.2, where the proposal density q(✓(i)

1:t

|y
1:t

) is
re-estimated in respective time steps using the weights w(i)

t

. Drawbacks of this approach
is the fact that the dispersion models and the weights w(i)

t

must be always recomputed
because of the immutable variables. However, this adaptive procedure guarantees that
the trajectories with low weights are discarded and a new population of trajectories is
sampled from the regions of the state-space determined by particles with high weights.
In other words, the sequential update of the proposal pdf suppresses the effect of sample
impoverishment. The resulting algorithm is summarized in Algorithm 7.5.

9.2.4 Evaluation of radiological quantities of interest

Usually, we are not interested just in the estimates of control variables but also in
radiological quantities evaluated by the dispersion model. Let the radiological quantity
of interest be a continuous function C(s, ⌧,✓) of spatial coordinates s = (s

1

, s
2

, s
3

);
time since the release star ⌧ ; and the control variables ✓. For computational reasons,
C(s, ⌧,✓) is discretized in both spatial and temporal domains. Let c

t

2 RNc be a
vector aggregating values of C(s, ⌧,✓) evaluated in an ordered set of spatial location
S = {s

1

, . . . , s
Nc} forming a computational grid in time ⌧ = �

⌧

t:

c
t

=

2

64
C(s

1

,�
⌧

t,✓
1:t

)
...

C(s
N

x

,�
⌧

t,✓
1:t

)

3

75 .

Here, �
⌧

is the time step length and t is time step index. In the following text,
c
t

⌘ C(✓
1:t

).
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Using the particles c(i)
t

= C(✓(i)
1:t

), i = 1, . . . N , the mean value c̄
t

and the covariance
⌃c

t

of the radiological quantity evaluated by the dispersion models can be at each time
step computed using the posterior (9.5), as follows,
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=
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⌘
T

�
. (9.6)

9.3 Application to Gaussian puff model
In this section we describe application of the proposed methodology to the assimilation
of the Gaussian puff model with the time integrated gamma dose rate measurements.

9.3.1 Parametrization of Gaussian guff model

The idea behind the methodology allows for estimation of an arbitrary set of control
variables. However, we restrict to the parametrization of the following physical quanti-
ties identified as the most influencing the resulting dose rates: magnitude of instanta-
neous release Qi, wind speed u = |u| and wind direction �. Using location parameters
Qi,?, u?

t

,�?
t

and control variables ✓
t

= (!
t

, ⇠
t

, 
t

)T, the three physical quantities are
parametrized:

1. Parametrization of magnitude of release Qi:
The overall magnitude of release must be treated as time invariant. It is param-
eterized using multiplicative immutable control variable !

t

2 R+ as follows:

Q = !
t

Qi,?. (9.7)

2. Parametrization of wind speed u:
In contrast to the overall magnitude of release, the wind direction is assumed to
be variable in time. This assumption is in agreement with the stochastic nature of
the atmospheric flow. It is parametrized using control variable ⇠

t

2 R as follows:

u
t

= (1 + 0.1⇠
t

)u?
t

+ 0.5⇠
t

. (9.8)

We can see, that u
t

= u
0

given ⇠
t

= 0.

3. Parametrization of wind direction �:
Wind direction is also assumed to be variable over time and homogeneous over
the whole calculation domain at a time. It is parametrized using control variable
 
t

2 R as follows:

�
t

= �?
t

+  
t

. (9.9)
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From the parameterization is evident that the wind field in assumed to be homogeneous
in the whole computational domain at a time. This simplifying assumption is reasonable
in the case of a short-range dispersion modeling, where the wind field in not likely to
change dramatically in space. Location parameters u?

t

and �?
t

represent the wind speed
and the wind direction given by a meteorological forecast and Qi,? is the initial estimate
of source term based on the safety parameters of a NPP. Similar parameterizations can
be constructed for some other physical processes involved, e.g., magnitude of vertical
and horizontal dispersion, dry and wet deposition.

The state vector ✓
t

is evolved using a transitional pdf

p(✓
t

|✓
t�1

) = �(!
t

� !
1

)p(⇠
t

|⇠
t�1

)p( 
t

| 
t�1

), (9.10)

and the process is initialized with a prior pdf

p(✓
1

) = p(!
1

)p(⇠
1

)p( 
1

). (9.11)

9.3.2 Observation operator

Given the control variables and other inputs, the model (2.16) evaluates activity con-
centration in air in Bqm�3. The observation operator converting the concentration to
the time integrated gamma dose in Gy is defined by (2.26)–(2.27).

9.3.3 Evaluation of weights

The weights are evaluated using

w
(i)

t

/ p(✓(i)
1:t

|y
1:t

)

q(✓(i)
1:t

|y
1:t

)
=

p(y
t

|✓(i)
t

)p(✓(i)
t

|✓(i)
t�1

)p(✓(i)
1:t�1

|y
1:t�1

)

q(✓(i)
1:t

|y
1:t

)

/
Q

t

j=1

p(y
j

|✓(i)
j

)p(✓(i)
j

|✓(i)
j�1

)

q(✓(i)
1:t

|y
1:t

)
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For computational reasons, the weights are evaluated in the logarithmic scale according
to Section 7.5.3 and the product in (9.12) becomes a sum of logarithms
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The normality of the observation model (9.4) determines the likelihood functions
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Matrix R
j

is the covariance matrix of observations y
j

. Since the observations are
assumed to be conditionally independent given ✓

j

, covariance matrix R
j

is diagonal
and the observations can be processed sequentially using
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Here, H
k

is a reduced observation operator evaluating just time integrated gamma dose
rate in location sR

k

2 SR, and �2

k,j

= R
j

[k, k], k = 1, . . . , N
y

, is the kth diagonal element
of R

j

.

9.3.4 Adaptive selection of proposal density

We apply the adaptive proposal selection procedure described in Section 7.5.2. Let the
proposal density be normally distributed. Using conditional independence of control
variables we can write:
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Vectors ⇠
t

= (⇠
1

, . . . , ⇠
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)T and  
t

= ( 
1

, . . . , 
t

)T aggregate wind speed and wind
direction in time steps 1, . . . , t. Their dimensions thus increase in time.

At each time step, moments of Gaussian pdfs in (9.13), mean values !̄
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9.4 Numerical experiment
In numerical experiment we assume an instantaneous release of radionuclide 41Ar with
half-life of decay 109.34 minutes. Radionuclide 41Ar was chosen for two reasons: Firstly,
since 41Ar is a noble gas, there is no deposition and consequently no groundshine. We
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need to calculate only the gamma dose rate from cloudshine. Secondly, according to
Tables of Radioactive Isotopes [BFS86], the radionuclide 41Ar emits gamma radiation
on energy level 1293.57keV with branching ration 99.1%. Generally, for calculation
of the gamma dose rate we need to assume all the energy levels and their branching
ratios specific to the given radionuclide. In the case of 41Ar we can neglect the other
energy levels within the remaining branching ratio 0.9% without any significant loss of
accuracy. Both these facts substantially simplifies gamma dose rate calculations and
makes the experiment more transparent. Since we simulate a release of a noble gas, the
deposition is not calculated here.

Data assimilation is performed in time steps t = 1, . . . , 18. Duration of time step �
⌧

is set to 10 minutes. This step length was chosen because we assume that the radiation
monitoring network provides measurements of the time integrated gamma dose rate in
10-minute intervals [DNTW09].

9.4.1 Computational and observational grids

Figure 9.1: Illustration of computational grid and monitoring network.

The computational domain is delimited with a square centered at the location of the
Czech nuclear power plant Temelin and with the side length 20km. The area is regularly
covered with a rectangular grid with the grid step 1km. The total number of grids points
is 41 ⇥ 41 = 1681. This area includes the emergency planning zone delimited with a
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COORDINATES OF RECEPTORS
Rec. no. x [m] y [m] Rec. no. x [m] y [m] Rec. no x [m] y [m]

1 0 1000 17 4330 -2500 33 -8660 -5000
2 500 866 18 2500 -4330 34 -10000 0
3 866 500 19 0 -5000 35 -8660 5000
4 1000 0 20 -2500 -4330 36 -5000 8660
5 866 -500 21 -4330 -2500 37 0 15000
6 500 -866 22 -5000 0 38 7500 12990
7 0 -1000 23 -4330 2500 39 12990 7500
8 -500 -866 24 -2500 4330 40 15000 0
9 -866 -500 25 0 10000 41 12990 -7500
10 -1000 0 26 5000 8660 42 7500 -12990
11 -866 500 27 8660 5000 43 0 -15000
12 -500 866 28 10000 0 44 -7500 -12990
13 0 5000 29 8660 -5000 45 -12990 -7500
14 2500 4330 30 5000 -8660 46 -15000 0
15 4330 2500 31 0 -10000 47 -12990 7500
16 5000 0 32 -5000 -8660 48 -7500 12990

Table 9.1: Coordinates of the receptors comprising radiation monitoring network in the
numerical example.

circle of radius 13km centered at the power plant. The zone delimits potential accident
site, where public is expected to be put in risk if exposed to the radioactive plume.

The measurements are assumed to come from a stationary radiation monitoring
network. Let the network comprises of 48 receptors placed in the four circular bands of
radii 1km, 5km, 10km, and 15km. In reality, the gamma dose rate receptors comprising
the monitoring network would be placed in settled areas, e.g., in towns and villages
within the zone. However, since we investigate the properties of the algorithm, the
configuration of receptor points is fully justifiable for our purposes. The receptors
closest to the center denote the receptors placed in the area of the power plant, the
tele-dosimetric system (TDS) on fence of the power plant. Schematic illustration of the
monitoring network and the computational grid is in Figure 9.1. The computational
points are represented with edges of the “chess board” and the receptors are denoted
with the red triangles. Coordinates of the receptors are in Table 9.1.

9.4.2 Simulation of observations

Numerical experiment is performed as a twin experiment, where the measurements are
generated using a twin model and perturbed with a random noise. The twin model is
a dispersion model initialized with a set of inputs defining unknown conditions of the
“real” release. Convergence of the dispersion model initialized with a set of nominal
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PARAMETERS OF NOMINAL MODEL AND TWIN MODEL

Immutable variables Mutable variables
Magnitude of release Wind speed Wind direction

Hour t Qi,? !r

1

Qi,r u?
t

⇠r
t

ur

t

�?
t

 r

t

�r

t

1 1 5.0E+14 5.0 2.5E+15 2.0 0.71 2.5 270.0 0.0 270.0
1 2 2.0 0.71 2.5 270.0 10.0 280.0
1 3 2.0 0.71 2.5 270.0 20.0 290.0
1 4 2.0 0.71 2.5 270.0 30.0 300.0
1 5 2.0 0.71 2.5 270.0 40.0 310.0
1 6 2.0 0.71 2.5 270.0 50.0 320.0
2 7 2.0 0.71 2.5 280.0 50.0 330.0
2 8 2.0 0.71 2.5 280.0 60.0 340.0
2 9 2.0 0.71 2.5 280.0 70.0 350.0
2 10 2.0 0.71 2.5 280.0 60.0 340.0
2 11 2.0 0.71 2.5 280.0 50.0 330.0
2 12 2.0 0.71 2.5 280.0 40.0 320.0
3 13 2.0 0.71 2.5 290.0 20.0 310.0
3 14 2.0 0.71 2.5 290.0 10.0 300.0
3 15 2.0 0.71 2.5 290.0 0.0 290.0
3 16 2.0 0.71 2.5 290.0 -10.0 280.0
3 17 2.0 0.71 2.5 290.0 -20.0 270.0
3 18 2.0 0.71 2.5 290.0 -30.0 260.0

Table 9.2: Parameters of nominal and twin model. Nominal values Qi,?, u?
t

,�?
t

of phys-
ical quantities treated as uncertain. “Real” values Qi,r, ur

t

,�r

t

of the quantities used for
simulation of measurements. Sought values of variables ✓r

t

= (!r

1

, ⇠r
t

, r

t

) transforming
the nominal values into the real values using parameterizations (9.7)–(9.9).

inputs to the twin model is then assessed.
The nominal values of the wind speed and the wind direction are hourly meteoro-

logical forecast from a numerical weather prediction model. The true values of the wind
direction are assumed to change every 10 minutes. The true wind speed is constant
and systematically higher than the nominal values. Summary of setting of the nominal
and the twin model is in Table 9.2:

1. Nominal values Qi,?, u?
t

,�?
t

given by an expert and the meteorological forecast
(locations parameters).

2. “Real” values of physical quantities Qi,r, ur

t

,�r

t

used for simulation of measure-
ments.

3. Sought values of control variables ✓r
t

= (!r

1

, ⇠r
t

, r

t

) transforming the nominal values
into the real values using parameterizations (9.7)–(9.9).
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Figure 9.2: Time integrated gamma dose evaluated for the first three hours of the
release with the nominal model (left) and the twin model (right).

In the experiment we expect convergence of the estimated control variables ✓̄
t

(9.6) to
✓r
t

. In Figure 9.2 we see the time integrated dose evaluated for the first three hours of the
release with the nominal model (left) and the twin model (right). Radiation monitoring
network SR is denoted with the red triangles. Measurements y

t

are sampled during the
twin model propagation in 10-minute intervals according to y

t

⇠ N (H(✓
1:t

),R
t

), where
the observation operation H is given by (2.26)–(2.27). Covariance matrix R

t

is a diag-
onal matrix, where the standard deviations of elements of y

t

are linearly proportional
to measurements:

R
t

[j, j] = (0.1y
t

[j] + 1.0E� 20)2 . (9.14)
Here, R

t

[j, j] and y
t

[j] denote the jth diagonal element of R
t

and the jth element of
y
t

, respectively. Particles are initialized with values of control variables sampled from
prior pdf (9.11), where

p(!
1

) = logN (0.5, 0.25),

p(⇠
1

) = U(�2, 2),

p( 
1

) = U(�22.5, 22.5).

Control variables are evolved using transitional pdf (9.10), where

p(⇠
t

|⇠
t�1

) = N (⇠
t�1

, �2

⇠

), �
⇠

= 0.4,

p( 
t

| 
t�1

) = N ( 
t�1

, �2

 

), �
 

= 2.5.

9.4.3 Results

We run the assimilation algorithm with N = 3000 particles for 18 steps covering the
first three hours of the release.
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In Figure 9.3, the nominal model, the twin model, and the assimilated model are
compared. The results are visualized in terms of Dc integrated from time step 0 up to
time steps 6, 12, and 18, respectively. We see that the nominal model without the data
assimilation would predict doses smaller in magnitude and also the affected areas would
be misspecified. We can observe that the expected values of Dc up to time step t = 12
well approximate Dc evaluated by the twin model. During the last six assimilation
steps we observe a misfit of the wind direction. This is due to the lack of measurements
in the area where the puffs (particles) were during the third hour of their propagation,
see Figure 9.3 (bottom-right).

Figure 9.3: Comparison of the nominal model, the twin model and the assimilated
model in time steps t = 6, 12, 18. The misfit of the wind direction in the last hour is
due to the lack of measurements in the area.
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In Figure 9.4, estimates Q̄i, ū
t

, �̄
t

(9.6) evaluated using nominal values Qi,?, u?
t

,�?
t

,
weights w

(i)

t

and the states ✓(i)
t

of the re-computed state trajectories ✓(i)
1:t

in each time
step are visualized. We see how the estimated values of magnitude of release, wind
speed and wind direction (red lines) approach the values used for simulation of mea-
surements (green lines). Values of the physical quantities used for propagation of the
puffs are denoted with the blue dots. Only those particles with nonzero weights are
visualized. During the first five steps, the magnitude of release is correctly recognized
and stays tuned for the remaining time steps. Convergence to the correct wind speed
and wind directions is more rapid. The lack of measured information during the last
six time steps cause, that the weights are approximately equal and the variances of
the estimates increase. With the non-informative weights, the algorithm does not have
enough information to correctly estimate the wind direction.

In Figure 9.5 we see how the expected values ✓̄
t

of control variables (red lines)
approach the true values of control variables ✓r

t

(green lines) used for simulation of
measurements. The gray bands denote the maximal and minimal values of particles in
each time step.

Time evolution of time integrated doses Dc at selected receptor locations is visualized
in Figure 9.6. There is a good agreement between the doses generated by the twin model
and the assimilated model. In the case of receptors 40 and 41 we observe a disagreement
due to misspecification of the wind direction caused by the lack of monitoring data.

9.5 Summary
This chapter has developed and demonstrated a new methodology for data assimilation
of gamma dose rate measurements with modeled activity concentration air. We propose
to use sequential Monte Carlo methods for estimation the most important parameters
of a dispersion model and thus improve the correspondence of the model output with
the measurements. The methodology is based on simultaneous propagation of multiple
dispersion models initialized with different inputs. The resulting algorithm seeks for
the most plausible values of these parameters (here referred as control variables) using
particle filtering with adaptive selection of the proposal density. Adaptive proposal
selection makes the algorithm more efficient, because the trajectories of particles are
sampled from a promising subspace of the full state-space. The presented form of
the proposal density is a rather simple choice and more elaborated approaches can be
constructed, e.g., a parametrized proposal in the form of a Gaussian mixture.

Introduced Bayesian methodology has very interesting properties suitable for the
solved scenario. The probabilistic aspect of the solution optimally combines a likely
answer with uncertainties of the available data. Since the uncertainty is accounted for,
the physical parameters of the model are the best parameters possible, not in the sense
of exact match, but because they lead to the best representation of the true system,
given the assumptions that were used to build the model. The corrected parameters
may in turn be used as input to long- and short-range atmospheric dispersion models,
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Figure 9.4: Estimated values of magnitude of release, wind speed and wind direction.
Green lines: values used for simulation of measurements; red lines: estimated values of
physical quantities; blue dots: values of particles with nonzero weights.

Figure 9.5: Estimated values of magnitude of release, wind speed and wind direction.
Green lines: values used for simulation of measurements; red lines: estimated values;
gray areas: regions between minimum and maximum values of the particles.
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Figure 9.6: Time evolution of time integrated doses Dc given by the twin model (blue
solid lines), the nominal model (green solid lines), and the assimilated model (red dashed
lines) at receptor locations 14, 15, 16, 27, 28, 29, 40 and 41 (see Table 9.1).
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resulting in greatly improved dose rate assessment.
The algorithm was demonstrated on estimation of magnitude of release, wind speed,

and wind direction of a Gaussian puff model. Since the measuring of concentration
itself is not technically feasible, nonlinear observation operator for transformation of the
activity concentration in air into the time integrated gamma dose rate was implemented.
Selected control variables were successfully estimated and the assimilated dose rates
were close to the dose rate from the twin model using a sparse observational grid. The
algorithm performed well in a meandering wind field, which is particularly important
under low-wind conditions. The extension of the algorithm to account for different
physical effects is straightforward, however, we have to consider computational demands
regarding intensive sampling during the particle filtering assimilation procedure.



Chapter 10

Application of Bayesian DA in the

Late Phase

10.1 Problem statement
Under the term late phase we understand the time period after the release of radioactive
material when the atmospheric transport (and subsequently the deposition) of radionu-
clides has finished. During the late phase, there is no more irradiation from the cloud
but the deposited radioactive material causes external irradiation from groundshine and
internal irradiation from inhalation of the re-suspended material. What is more, ra-
dionuclides migrate through the root system and foliage of plants into their edible parts
and thus can cause internal irradiation of people and livestock when eaten. This phase
extends over a period of several weeks or many years, depending on the magnitude and
type of initially deposited radionuclides.

From the point of view of radiation protection, the attention is focused on the long-
term monitoring of the radiation levels and modeling of its further transport towards
human body through the food chain. We are concerned with the deposition modeling.
Determination of the spatial and temporal distribution of radionuclides on terrain and
the rate of radionuclides removal is crucial for planning of the late phase countermea-
sures. These regard agriculture, foodstuffs production and water-resources management
[PFM93].

In this chapter we propose a new data assimilation method based on the MPF frame-
work developed in Chapter 8 for joint estimation of a spatially distributed radiological
quantity and a set of parameters concerning the process of radioactivity removal.

10.2 Data assimilation scenario
During the late phase, the main aim of monitoring in to obtain a comprehensive pic-
ture of contamination of the environment [GWW+04]. The most significant monitored
radiological quantities are:

122
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• The external dose rate from deposition (groundshine),

• The spectrum of deposited radionuclides and the relative deposition on different
surfaces,

• The contamination of reference foodstuffs.

We focus on the groundshine dose modeling, specifically, on determination of the spatial
distribution of radionuclides and the groundshine dose time evolution. We approach
the problem using the data assimilation, where the groundshine dose measurements are
related to the predictions of deposition via groundshine dose evolution model. Here,
the highest uncertainty consists (i) in the initial displacement of the deposition and (ii)
in the rate of groundshine dose mitigation due to radionuclides removal and migration
processes. The initial deposition displacement is fully determined by the plume deple-
tion during the early phase. This means that the uncertainty regarding aerial pollution
propagation must be considered. What regards the issue of groundshine mitigation, two
dominant processes—radioactive decay and environmental removal—must be modeled.
The latter is given by parametrized formula (2.30). Generally, the parameterization
of environmental removal depends on many factors, including the place of model ap-
plication. A reasonable approach is to treat the parameters as random variables and
attempt for their estimation using available radiological measurements.

In this work, the following objectives of the groundshine dose modeling in the late
phase are addressed:

1. The estimation of initial deposition displacement using available measurements
referring to the beginning of the late phase.

2. The estimation of radiation levels in the contaminated areas and the prediction
of its time evolution.

3. The estimation of the speed of radionuclides removal.

The refined estimates of the spatio-temporal distribution of radioactivity and its time
evolution can in turn be used for long-term predictions.

Data assimilation in the late phase has its own specifics. The key differences com-
pared to the data assimilation in the early phase are as follows:

High state dimension: The state vector contains the values of deposition in an or-
dered set of spatial points. To achieve a good spatial resolution, we want to
estimate the deposition values on a dense computational grid. This means that
we have to employ an estimation methodology suitable for large-scale problems,
e.g., ensemble filtering.

Time constraints: With respect to the dynamics of the radionuclides transport in the
late phase and its duration, the time constrains are not so strict as in the early
phase. Particularly in the case of a retrospective analysis, the time constraints
are of a minor interest.
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Higher amount of available data: We can assume that the number of available
measurements is higher than in the early phase. Monitoring strategies in the
late phase combine various monitoring systems in an operational way to meet
the requirements of off-site emergency management. We can assume that the
observations come from the airborne gamma spectrometry. It is a powerful tool
capable of rapid mapping of contamination levels in a broader scale, which was
demonstrated during the Chernobyl accident [GWW+04].

With respect to the above specific properties, the data assimilation strategy must be
appropriately chosen. We propose to use the marginalized particle filtering framework
developed in Chapter 8. Here, the uncertain parameters of the environmental removal
are estimated using the particle filter and the spatio-temporal distribution of the de-
position given the parameters is estimated using the ensemble square root filter. What
results is a hybrid filter, where N weighted ensemble filters are simultaneously run.
Overall rate of environmental removal in the considered area is estimated using the
particle filter and the ensemble filter account for local characteristics.

For numerical reasons, the calculations are performed in terms of deposition. Trans-
formation of the deposition into the groundshine dose (2.28) can be simply done using
the dose rate conversion factor.

10.3 Proposed data assimilation methodology
Let d

t

2 RNd be a vector of deposition values in a set of computational points S =
{s

1

, . . . , s
Nd

}. Let ✓
t

2 RN✓ aggregate radionuclides removal rate parameters and pa-
rameters influencing magnitude and structure of model error in the ensemble filter.
We use marginalized filtering framework introduced in Chapter 8, where we substitute
xc

t

⌘ d
t

, xp

t

⌘ ✓
t

in factorization (7.58), yielding the state vector

x
t

=


d
t

✓
t

�
. (10.1)

Parameters ✓
t

are estimated using the particle filter and the deposition field d
t

is
estimated using the conditional ensemble square root filter. The resulting posterior is
of the form given by (7.60).

10.3.1 State evolution model

Model M(d,✓, ✏) describing the evolution of deposition d is a non-linear function of
parameters ✓ and zero-mean mutually independent random noise ✏,

d
t

= M(d
t�1

,✓
t

, ✏
t

).

From (2.29) follows that given particular values of ✓
t

, the model becomes linear in d
t

and we can construct a linear state evolution model for fixed ✓
t�1

and ✓
t

represented
with a matrix M,
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d
t

= M(✓
t

)d
t�1

+ ✏
t

,

M
t

=
f
R

(t)f
E

(t,✓
t

)

f
R

(t� 1)f
E

(t� 1,✓
t�1

)
I. (10.2)

Determination of spatio-temporal distribution of deposition and the speed of its
removal can be interpreted as estimation of the augmented state x

t

comprised of the
vector d

t

of the deposition values on a grid and the vector ✓
t

of variables parame-
terizing the removal speed. Since we attempt for estimation of the model error, its
parameterization is also included into ✓. The state is evolved using transitional pdf

p(x
t

|x
t�1

) = p(d
t

,✓
t

|d
t�1

,✓
t�1

)

= p(d
t

|d
t�1

,✓
t

,✓
t�1

)p(✓
t

|d
t�1

,✓
t�1

),

where the time evolution of ✓
t

is assumed to be dependent just on its previous value,
p(✓

t

|d
t�1

,✓
t�1

) = p(✓
t

|✓
t�1

).

The time evolution of d
t

is given by a Gaussian pdf

p(d
t

|d
t�1

,✓
t

,✓
t�1

) = N �
d̄
t|t�1

,P
t|t�1

�
, (10.3)

d̄
t|t�1

= M
t

d̄
t�1|t�1

, (10.4)

where d̄
t|t�1

and P
t|t�1

are predictive statistics evaluated by the time update step of
the ensemble filter. Since the parameterization of model error is included in ✓

t

, the
predictive error covariance matrix P

t|t�1

is a function of ✓
t

.

10.3.2 Observation operator

Groundshine dose measurements given on an observational grid SR

t

= {sR
1,t

, . . . , sR
N

y

,t

}
are aggregated in a vector y

t

2 RNy . The measurements assumed to be normally
distributed with covariance matrix R

t

and mutually independent given the state x
t

,

p(y
t

|x
t

) = N �
Hd

t|t�1

,R
t

�
. (10.5)

Covariance R
t

describes the instrumental error of the measuring device and the linear
observation operator H relates the deposition with the groundshine dose. In the case
that the observational and the computational grids are not aligned, the operator also
performs a spatial interpolation using the bilinear interpolation.
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10.3.3 Evaluation of weights

The normality of the observation model (10.5) implies the likelihood function used for
evaluation of weights in the particle filter has the form

p(y
t

|y
1:t�1

,x
(i)

t

) / det
⇣
Z

t

(✓(i)
t

)
⌘� 1

2

exp


�1

2

⇣
v
(i)

t

⌘
T

Z�1

t

(✓(i)
t

)v(i)

t

�
, (10.6)

where v
(i)

t

= y
t

�Hd̄
(i)

t|t�1

, Z(i)

t

= HP
(i)

t|t�1

HT +R
t

. Note, that the covariance matrices
Z

(i)

t

are explicitly conditioned on vectors ✓(i)
t

corresponding to particles.
Since the covariance square roots are stored in EnSRFs, it would be beneficial to

avoid evaluation of the full covariance matrices. This can be achieved using the results
of Appendix B. Let F(i)

t

and S
(i)

t|t�1

be square roots of covariance matrices Z(i)

t

and P
(i)

t|t�1

,
respectively:

Z
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⇣
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⌘
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Using the result of Appendix B and substituting B = S
(i)

t|t�1

, C = H
t

, and D = R
t

, it
follows that " ⇣
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where T 2 RNy⇥Ny . Having upper triangular Cholesky factor F
(i)

t

of Z(i)

t

, we can use
(7.57) for computing the particle weights in logarithmic scale.

10.4 Numerical experiment
We focus on modeling of the groundshine in the zone of emergency planning during the
first two years after a severe reactor accident. In our numerical experiment we assume
a deposition of radionuclide 134Cs with half-life of decay T

1/2

= 2.0648 years.
We want to perform a retrospective analysis using historical measurements sampled

in one-month intervals for the time period of two years. The augmented state vector is
of the from (10.1), where d

t

accounts for spatio-temporal distribution of the deposition
and ✓

t

describes the rate of radionuclides removal and the magnitude of model error.
For given ✓

t

, deposition d
t

is estimated with the ensemble square root Kalman filter
with multiplicative inflation of covariance (7.35) and evolved using the model (10.3).

Since the assumed time period is much shorter than the expected half-life of slow
component of the environmental removal, we do not treat T s in (2.30) as random and
set it with a fixed value. We estimate just the half-life of the fast component T f and
its fraction df . Fraction of the slow component ds is fully determined by the binding
condition df + ds = 1. Parameters ✓

t

= (df
t

, T f

t

,�
t

)T are evolved using transitional pdf

p(✓
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|✓
t�1

) = p(df
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|df
t�1

)p(T f

t

|T f

t�1

)p(�
t

|�
t�1

), (10.7)
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where the evolution of its elements is modeled by random walk processes
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, �2
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+ 0.01, (10.8)
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= 0.05�
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+ 0.01. (10.9)

Proposal density of the particle filter is chosen as (10.7) yielding the formula for
recursive evaluation of weights

w
(i)

t

/ p(y
t

|✓(i)
t

)w(i)

t�1

, i = 1, . . . , N.

10.4.1 Computational and observational grids

The deposition is estimated on a polar grid covering the eastern half of the zone of emer-
gency planning using total number N

y

= 136 observations. Rectangular observational
grid with N

d

= 520 grid points has the grid step 1.5km. Illustration of the observa-
tional and computational grid is in Figure (10.1). The fact that the polar computational
grid and the rectangular observational grid are not aligned means that the observation
operator must interpolate modeled values into the locations of receptor points. We
implemented a linear observation operator H using the bilinear interpolation.

10.4.2 Estimation of prior distribution of deposition

Let us recall, that the initial conditions in the late phase are fully determined by
the plume trajectory and plume depletion during the early phase. For simulation of
the release we use atmospheric dispersion model from the environmental code HARP
(HAzardous Radioactivity Propagation) [PHP07]. It is a segmented Gaussian plume
model capable for simulation of many physical processes.

We performed an extensive Monte Carlo simulation to consistently account for un-
certainty connected with the plume propagation. The simulation covered a broad range
of possible release scenarios, where 14 parameters � = (�

1

, . . . , �
14

)T of the dispersion
model were treated as random. The list of parameters selected upon uncertainty study
performed with the model is in Table (10.1). The total number of 5000 model real-
ization were computed using inputs {�(1), . . . ,�(5000)} sampled from a joint prior pdf
p(�).

Let {d(1)

0

, . . . ,d
(5000)

0

} be deposition vectors generated using the dispersion model
initialized with different sets of input parameters {�(1), . . . ,�(5000)}. Prior pdf p(d

0

) =
N (d̄

0

,⌃d

0

) represents an empirical distribution of the initial deposition:
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Figure 10.1: Illustration of computational and observational grids. We focus on the
eastern half of the zone of emergency planning.

Param. Physical effect Param. Physical effect
�
1

intensity of release �
8

advection speed of plume
�
2

horizontal dispersion �
9

wind profile
�
3

horizontal fluctuation of wind dir. �
10

vertical dispersion
�
4

dry deposition of elements �
11

mixing layer height
�
5

dry deposition of aerosols �
12

heat capacity of the effluent
�
6

elution of elemental. iodine �
13

precipitation intensity
�
7

elution of aerosols �
14

time shift of precipitation

Table 10.1: Parameters treated as uncertain during Monte Carlo sampling of candidates
on ensemble members.

10.4.3 Simulation of observations

Measurements are simulated from the deposition vectors dtwin

t

, t = 1, . . . , 24, evaluated
using (2.29) and an initial vector dtwin

0

computed with the HARP model with initialized
with a set of inputs �twin. The speed of environmental removal in the twin model is
determined by the fast component with fraction df = 0.54 and half-life T f = 1.20 years.
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Measurement vectors y
t

are sampled from dtwin

t

in receptor locations and perturbed
with zero-mean Gaussian noise according to

y
t

⇠ N (Hdtwin

t

,R
t

). (10.10)

The standard deviation of the observation error is a linear function of the measured
values ytwin

t

= Hdtwin

t

,

R
t

[j, j] = (0.1ytwin

t

[j] + 500)2, j = 1, . . . , N
y

.

Deposition generated using the twin model is in Figure 10.2 (top).

Figure 10.2: Left column: Visualization of initial deposition of the twin model dtwin

0

(top) and of the initial ensemble mean (bottom). Right column: Interpolation of dtwin

0

projected into the space of observations using (10.10) (top) and interpolation of the
initial ensemble mean projected into the space of observations using (10.10) (bottom).



CHAPTER 10. APPLICATION OF BAYESIAN DA IN THE LATE PHASE 130

10.4.4 Selection of prior ensemble

EnSRFs within the MPF framework are initialized with a prior ensemble. This ensemble
represents our initial belief on distribution of the deposition at the beginning of the
late phase. In Section 10.4.2 we estimated the prior distribution of the deposition
using 5000 realizations generated with the HARP system. However, to achieve a better
agreement of the initial ensemble with the spatial localization of the deposition, we
can use measurements y

0

referring to the beginning of the late phase and select those
realizations from the set {d(1)

0

, . . . ,d
(5000)

0

}, which are in the best agreement with the
measurements. This procedure increases the representativeness of the prior ensemble.
Realizations are weighted with the likelihood function

p(y
0

|,d(i)

0

) / det (Z
0

)�
1

2 exp


�1

2
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Resulting weights are in Figure 10.3. We used the multinomial re-sampling and selected
20 realizations which were included into the prior ensemble. 2-dimensional visualization
of the prior ensemble mean is in Figure 10.2 (bottom).

Figure 10.3: Weights of candidates d
(i)

0

on members of initial ensemble.

10.4.5 Results

We run the data assimilation algorithm with 100 particles for 24 steps, i.e., 100 ensemble
square root filters were run using different parameters ✓(i)

t

in respective time steps. In
Figure 10.4 we see the deposition values for a randomly selected receptor location. We
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Figure 10.4: Results for a selected observation location. Blue line: true deposition
(twin model); green dots: measurements and their standard deviations; cyan dots:
prior estimates (forecasts); gray area: standard deviation of the forecast error; red
dots: posterior estimates.

see that the posterior values (red dots) becomes identical with the true deposition (blue
line) given by the twin model. Also that the variance of estimates (gray area) decreases
with time.

In Figure 10.5 we see spatial visualization of the data assimilation results for time
step 0, 8, 16, and 24. The nominal model, the twin model and the assimilated model
are compared in respective time steps. We see that the ensemble localization procedure
perform well and the initial estimate of affected area is similar to that given by the twin
model. Already after the first assimilation cycle we obtain a good agreement between
the assimilated model and the twin model. In the remaining time steps we observe,
how the assimilated model approaches the twin model. To achieve a good agreement
in all the computational points, more data assimilation cycles would be needed.

Besides the time evolution of the deposition we also estimate the speed of radionu-
clides removal given by the fast component of the environmental removal. Estimated
parameters df and T f are assumed to be time invariant. Comparison of the “true”
parameters used for the simulation of measurement and the average values of the esti-
mates is in Table 10.2. We observe a good correspondence of the estimates and the true
values. The estimates can be in turn used as an input into the subsequent predictive
models regarding further transport of radionuclides through the environment.
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Figure 10.5: Visualization of assimilation results in time steps 0, 8, 16, and 24. Nomi-
nal model (prior mean), twin model (measurements) and assimilated model (posterior
mean) are in first, second and third column, respectively. Color scale is the same as in
Figure 10.2.
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Parameter “True” values Mean estimated values
df 0.54 0.57
T f 1.20 1.26

Table 10.2: Comparison of “true” parameters used for simulation of measurements with
those estimated using the data assimilation procedure.

The mean value of the estimated multiplicative inflation factor used for correction
of model error was 2.27 which indicate the fact that the spread of the initial ensemble
was heavily underestimated.

10.5 Summary
This chapter has addressed the problem of data assimilation in the late phase of a radi-
ation accident. We were concerned with the task of data assimilation of the forecasted
spatio-temporal distribution of deposition with the groundshine dose measurements.

In [Pal05], ensemble Kalman filtering has been identified as the most promising
approach for this task. We developed this idea further and applied the MPF frame-
work introduced in Chapter 8 for estimation of spatio-temporal distribution of the
groundshine in tandem with the speed of environmental removal. In the proposed data
assimilation method, particle filter approximates the posterior pdf of the global speed
of radionuclides removal, whereas the conditional ensemble square root filter accounts
for local variations in the deposition field reflected in groundshine dose measurements.

The performance of the method was demonstrated on a twin experiment, where
the groundshine dose evolution model was assimilated with groundshine dose measure-
ments. A release of 134Cs was simulated with the atmospheric dispersion model em-
bedded in the decision support system HARP. We performed an extensive Monte Carlo
simulation of the possible release scenarios in order to account for uncertainty regarding
the plume propagation during the early phase. Deposition fields resulting from 20 most
plausible release scenarios were used for initialization of the ensemble filters attached
to particles. The estimated deposition field approached that evaluated using the twin
model. The rate of environmental removal also was correctly identified. The results are
promising, however, the operational applicability remains to be demonstrated on real
deposition data.



Chapter 11

Conclusion

This research has addressed the application of data assimilation methods in the field of
radiation protection. We focused on exploitation of advanced data assimilation meth-
ods, namely particle filtering and marginalized particle filtering for assessment of radi-
ation situation in the early and the late phase of a radiation accident. Respective data
assimilation methodologies were formalized using consistent Bayesian framework and
notation.

The research has demonstrated that the in case of continuous data assimilation,
e.g. during the early phase, particle filtering approach, when applied in this area,
provides useful insights into the problem and results in improved versatility over more
traditional approaches, e.g. Kalman filtering. Data assimilation systems based on
particle filtering have a potential to be used for real-world emergency response in the
near future. We have also demonstrated, that simple data assimilation techniques, like
optimal interpolation of funtion fitting methods, can be successfully applied to special
scenarios of intermittent assimilation.

Since no data from real reactor accident were available, all experiments were per-
formed as twin experiments. In the twin experiments, measurements are simulated
using a model of the system under investigation and perturbed with a random noise.
The convergence of the estimated values to the known “background truth” can be then
easily assessed.
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Mean value and covariance of a mixture of Gaussians
Assume a weighted mixture of n Gaussian distributions N (x;µ(i),P(i)) of a random
variable x with mean values µ(i) and covariance P(i), i = 1, . . . , n:

p(x) =
nX

i=1

w(i)N (x;µ(i),P(i))

The mean E[x] and covariance E[(x� E[x])2] of x can be calculated as follows:

E[x] =

ˆ
xp(x)dx

=
nX

i=1

w(i)

ˆ
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Appendix B

Computation of time update using square roots
Let A 2 Rn⇥n, B 2 Rn⇥n, C 2 Rm⇥n, D 2 Rn⇥n be real matrices. Following [Sim06],
let us suppose that we can find an orthogonal matrix T 2 R2n⇥2n such that
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2 Rn⇥n. From orthogonality of T follows that

TTT =


T

1

T

T
2

T

� ⇥
T

1

T
2

⇤
=


T

1

TT
1

T
1

TT
2

T
2

TT
1

T
2

TT
2

�
=


I 0
0 I

�
,

and consequently

T
1

TT
2

= T
2

TT
1

= 0, (11.3)
T

1

TT
1

= T
2

TT
2

= I, (11.4)

where 0 and I are zero and identity matrices, respectively. Using (11.2) we can write
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So if we can find an orthogonal matrix T 2 R2n⇥2n such that (11.1) is fulfilled, then
matrix A is equal to transpose of square root of Z = AAT. We can use various
methods to find the orthogonal matrix and resulting square root of Z, e.g., Householder
transform, Gram-Schmidt orthogonalization, or Givens rotations [GVL96]. Different
methods give us different square roots of Z. From QR decomposition we obtain a
upper triangular factor of the Cholesky decomposition of Z.
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