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1 Introduction

This report describes predictive monitoring of radiological situation on measuring units of the Early
Warning Network (EWN) of the Czech Republic.

The monitoring is based on predictive capabilities of simple models estimated in Bayesian way.
The report exploits ready models and algorithms and focuses on their achievable performance. The
underlying theory can be found in many sources, e.g. [1, 2]. The report itself is written for non-
mathematicians and the performance is inspected using extensive simulation studies. Typical results
are summarized here.

The algorithms essentially check natural background dose-rate measurements with the aim to
recognize a non-natural increase in the measurements. The recognition is to be made as quickly as
possible – this information could be vital for early warning as well as in early stages of a nuclear
release.

Autoregressive models and mixture models are used. Estimates of their parameters are recursively
updated according to the adopted Bayesian methodology. These models suit well to the considered
technical problem. With them, the values to be measured can be predicted and the following key
question answered:
“What is the probability that the measurement in a measuring station of the EWN will reach a threshold
value in couple of measuring instants?”. In this way, a nuclear release can be detected safely before
actually reaching a dose-rate threshold value. Consequently, the corresponding preventive actions can
be speeded up while the level of false alarms is kept low.

In this study, non-natural trends in measurements are simulated as no real data reflecting releases
are available from the EWN. The tests are as extensive as possible and processing algorithms are
summarized in appendix to ensure reproducibility of algorithms. MATLAB (MathWorks) [3] has
been selected as the experimental environment. Resulting software modules for predictive monitoring
are available in the form of C-coded modules.

2 Operations of EWN

The EWN of the Czech Republic has been established after 1990 to provide overview information
about radiation situation across the territory and to raise an alarm in case of unreported accident
outside the ČR.

Each EWN measuring site provides values of integrals of dose-equivalent over 5 minutes. Conse-
quently, measurement noise is suppressed substantially. The EWN operates in one of three modes –
standard mode, alert mode and emergency mode. The modes of operation differ in frequency of data
transmission to Center of Radiation Monitoring Network. The modes are started when the dose rate
measurement reaches a threshold value.

This report is dedicated to the problem of prediction that the measurements will exceed an ”emer-
gency level” that is set uniformly to the value of µSv/hour. The level cannot be reached by the
natural background radiation.

3 Measurements available

The dose-rate measurements analyzed have been supplied by National Radiation Protection Institute
in the form of 5-minutes measurements of the Czech EWN, sites Churáňov, Temeĺın and Dukovany.

The Churáňov is a mountain measuring site with relatively higher natural background, the Temeĺın
and Dukovany are places of the nuclear power stations. One hour averages are used for the purpose
of the predictive monitoring. Measurements from 1. 1. 2006 to 24. 4. 2007 are available. The original
data and the one hours averages are described in Fig. 3.

The data characteristics are:
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Figure 1: Raw data and 1 hours averages, site Churáň

site mean median minimum maximum st. deviation
Churáňov 0.139 0.149 0.086 0.390 0.023
Temeĺın 0.130 0.134 0.093 0.271 0.015
Dukovany 0.09 0.093 0.058 0.371 0.008

The data histograms are displayed in Fig. 3, Fig. 3 and Fig. 3, respectively.
The peaks in measurements are produced by radon daughter products in aerosol form washed out

by rain, the slow trends in measurements are caused by year seasons and the “stationary fluctuations”
reflect changes of terrestrial and cosmic radiation.

4 Mixture model

A sequence d(̊t) ≡ (d1, . . . , d̊t) of data records dt, labelled by the discrete time t ∈ t∗ ≡ {1, . . . , t̊}
is observed and mutual relationships are searched for. They are modelled by the joint probability
density function (pdf)

f(d(̊t)|Θ) =
∏
t∈t∗

f(dt|d(t− 1), Θ).

Both the joint pdf and respective factors are conditioned on unknown parameters Θ. The considered
parametric mixture model has the form

f(dt|d(t− 1),Θ) =
∑
c∈c∗

αcf(dt|d(t− 1), Θc, c). (1)

The individual pdfs f(dt|d(t− 1), Θc, c) are called parametric components. The unknown parameter
Θ consists of probabilistic weights of components α ≡ (α1, . . . , αc̊) ∈ α∗ ≡ {

αc ≥ 0,
∑

c∈c∗ αc = 1
}

and by individual parameters Θc, c ∈ c∗, of components. The components are decomposed by the
chain rule

f(dt|d(t− 1), Θc, c) =
∏

i∈i∗
f(di;t|ψic;t,Θic, i, c), (2)

where f(di;t|ψic;t, Θic, i, c) are called parametric factors. They predict scalar entries di;t of dt called
factor outputs. They are assumed to depend on regression vectors ψic;t that consist of current values
of other record entries dj;t, j > i and several delayed record values dt−k, k ≥ 1. The factorization (2)
allows us to combine entries of logical and continuous nature, to consider factors of different types.
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Figure 2: Histogram of data, site Churáňov
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Figure 3: Histogram of data, site Temeĺın
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In this study, predictions of scalar measurements originating from a single site are treated. Con-
sequently, parametric components coincide with parametric factors. They factors are normal au-
toregressive (AR) models. Their conditional expectations are assumed to be a linear combination
of an unknown number of delayed measurements. The auto-regression coefficients and variances are
assumed to be constant but factor specific.

The theory connected to mixtures and estimation of their structure and parameters can be found
in [4]. Relevant software and case studies can be found in supplement of this book. Within this report,
the results of the following particular subtasks are presented:

• Mixture initialization It finds the mixture structure (number of components c̊, structure of
respective factors forming the component, construction of statistics describing initial estimates
of parameters)

• Prediction with mixture It predict the modelled data up to using the initialized and estimated
mixture.

5 Results of mixture initialization

The initialization starts with an initial mixture of one component of the order 6. The resulting
mixtures are displayed in the Fig. 5. The pdf of resulting components is denoted by dash-dotted
lines. The full line corresponds with the marginal pdf.

The following table describes structures of mixtures for respective measurement sites. The column
“dfcs” contains an effective number of data described by the corresponding component. Thus, two
(three) numbers in this column mean that the mixture has two (three) components. The last column,
labelled delays, lists delayed data that were found significant for predicting of the current value of the
modelled signals. The numbers 1 4 6 mean that dt is the best predicted using linear combination of
dt−1, dt−4 and dt−6. Other possibilities should be read similarly.

site dfcs delays
Churáňov 4278 2 3 4 5 6

295 1
Temeĺın 153 1 4 6

6488 1 2 4
4352 3 4 5 6

Dukovany 164 1 2 3 6
5708 1
5121 2 3 4 5

The components found in the mixtures correspond to individual components of the background
radiation The peaks in measurements are produced by radon daughter products in aerosol form washed
out by rain, the other components are caused by year seasons and whether and/or reflect changes of
terrestrial and cosmic radiation.

6 Results of prediction with mixtures

Prediction means estimation of future values of the measurements from their history. Its quality is
usually judge according to the prediction error, i.e., the difference between the predicted and the real
value of the measurement. Root-mean square error normalized by standard deviation of data is used
here as a numerical indicator of prediction quality. This prediction error norm “epn” shows what part
of variance of measurements can be “explained” by the model.

Typical results of recursive prediction of Churáňov measurements by the initialized mixture are in
the Fig. 6. The measurements are displayed by dotted line (lower curve) and the prediction by full
line.

The prediction error norms for all three sites are in the following table
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Figure 5: Initialized mixtures
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site epn
Churáňov 0.34
Temeĺın 0.39
Dukovany 0.78

To get a feeling how much we gained by using complex mixture model, we have performed another
case study with auto-regressive model only with estimated offset (marked by 0 in column of delays).
The following table shows the results for Churáňov site.

delays epn
1 0.39
1 0 0.38
1 1 0 0.60

7 Conclusions

The presented results indicate that mixtures of auto-regressive models applied to individual sites
improve predictions comparing to plain auto-regression. Their individual components can be well
interpreted as respective constituents of natural radiation. The results promise that this interpretation
and application to multivariate date will provide a very reliable warning on non-natural increase of
background radiation.
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