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Introduction

After an accident in a nuclear power plant, there is a
radioactive cloud passing over the terrain. The spatio-
temporal distribution of radionuclides is modeled by the
means of numerical dispersion models in order to de-
termine appropriate countermeasures. Output of such
a model is a prediction of radiation situation given in
terms of radiological quantity activity concentration in
air C(s, t), where s = (s1, s2, s3) is a vector of spa-
tial coordinates and t = 1, . . . , tMAX is the time index.
The concentration itself is a difficult quantity to mea-
sure, therefore the measuring devices are designed to
measure the γ-dose rate. These measurements can be
provided by stationary measuring sites or mobile groups.

The evolution of C(s, t) is modeled by a dispersion
model which is parametrized by a set of parameters Θt.
These parameters reflect physical processes involved in
the atmospheric dispersion, atmospheric conditions and

conditions of the accident in each time step t. Exact
values of the parameters are uncertain due to stochastic
nature of the dispersion, lack of accurate information,
etc. Typically, the choice of values of these parameters
is subject to an expert opinion. The subjective choice
of parameter values can introduce significant errors into
the predictions. To avoid this, we apply Bayesian ap-
proach and treat the parameters as random quantities.
We attempt to estimate parameter distributions in con-
secutive time step from measurements. The number of
parameters is potentially large but a restricted subset
θt ⊂ Θt of the most important parameters can be
found for specific scenario [4].

We can employ data assimilation and use the sparse
measurements to improve reliability of model predictions
and thus allow for introduction of effective countermea-
sures in the actually affected areas.

We have:

• Atmospheric dispersion model (ADM) CADM modeling C(s, t) in a set of grid points – vector Ct

•Measurements of time integrated γ-dose rate at time t – vector yt

• ADM is a function of parameters and inputs CADM = CADM(Θ)

• A group of most significant parameters θ ∈ Θ is modeled as random due to the stochastic nature of the
background physics

We want to:

•On-line estimate the state xt = [Ct,θt]
Tas the cloud is passing over stationary measuring sites

• Use posterior distribution p(xt|y1:t) to predict future evolution of the radiation situation p(xt+k|y1:t)

Background physics

Evolution of state
We chose the Gaussian puff model (GPM) for the ADM.
It is a statistical approximation of solution of the three
dimensional advection-diffusion equation:

C(s, t) =
QfD(t)R(t)
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where s is spatial location, t is time index, Q is the
total released activity in Bq, u is the wind speed,
{σsi}|i=1, 2, 3 are dispersion coefficients, fD(t) is fac-
tor of radioactive decay, dry and wet deposition. Term
R(t) accounts for homogenization of the vertical profile
of concentration due to the reflections. Evolution of the
state is given by the transition pdf:

p(xt|xt−1) = p(Ct, θt|Ct−1, θt−1) (2)

= p(Ct|Ct−1, θt, θt−1)p(θt|Ct−1, θt−1)

Under the choice of ADM and its parameters θt, the
evaluation of Ct is deterministic:

p(Ct|Ct−1, θt, θt−1) = δ(Ct − CADM(θt)) (3)

Time evolution of θt is given by the pdf p(θt|θt−1). Un-
der the choice of time invariant parameters (θt = θ),
the transition pdf gets the form p(θt|θt−1) = δ(θt−θ).
The process is initialized with prior pdf p(θ0).

Observation operator
Measurements are assumed to be normally distributed
and mutually independent given the state xt. Errors of
measurements are set proportional to the their values
with an offset term modeling the background radiation
superposed to the actual dose measurements

yt ∼ N(Dt, Σ(Dt)), (4)

where Dt is a vector of measurements of time inte-
grated absorbed γ-dose in all the measuring sites avail-
able in time t. If the released nuclide is a noble gas,
there is no deposition and we don’t have to assume
ground shine from deposited material. In this case, the
measured quantity is just the γ-dose from cloud shine.
The time integral of absorbed γ-dose rate in tissue from
a mixture of radionuclides emitting photons on different
energy levels Eγ,j is

Di,t =

t∫
t−1

∑
j

Kj µa,j Eγ,j
ρ

Φj(C(s(i), τ )) dτ, (5)

where Kj, µa,j and Φj are conversion coefficient, ab-
sorption coefficient and effective flux of gamma rays,
respectively. Subscript j stands for the fact, that the
particular values depend on certain energy level Eγ,j.
Summation is over assumed energy levels and ρ is the
mass density of air. Equation (5) defines the observa-
tion operator converting the concentration in Bqm−3

to the time integrated γ-dose in Gy.
The general expression for Φ at a receptor located at
s̃ = (s̃1, s̃2, s̃3) from a source of energy Eγ dispersed
in air is

Φ(s̃, Eγ) =

∫∫∫
f (Eγ)B(Eγ, µr)C(s)

4π r2
ds, (6)

where r2 = (s̃1− s1)2 + (s̃2− s2)2 + (s̃3− s3)2, f (Eγ)
is the branching ratio to the specific energy, µ is the
attenuation coefficient of air, B(Eγ, µr) is the dose
build-up factor, C(s) is the radionuclide concentration
in Bqm−3 of isotope being considered. The build-up
factor can be calculated from Bergers analytical expres-
sion

B(Eγ, µ r) = 1 + a µr exp(b µr), (7)

where coefficients µ, a and b depend on Eγ.

Data assimilation

Bayesian approach to data assimilation is based on rep-
resenting uncertainty via probability distribution. When
no measurements are available the probability distribu-
tion of the considered state (the prior) is wide to cover
all possible realizations of the state. Each incoming
measurement is bringing information about the “true”
state, reducing the original uncertainty. In effect, with
increasing number of measurements, the posterior pdf
is narrowing down around the best possible estimate.

Formally, the prior distribution p(x0) is transformed
into posterior pdf p(xt|y1:t) using measurements y1:t =
{y1, . . . , yt} by recursive repetition of the following

steps:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

(8)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (9)

The process is initialized by prior p(x0).
Evaluation of (8) and (9) involves integration over

complex spaces and often it is computationally infea-
sible. Suboptimal solution can be found by the means
of sequential Monte Carlo methods also known as par-
ticle filters [1].

Assimilation scenario

Numerical experiment is conducted as a twin experi-
ment: the measurements are simulated via a twin model
and perturbed. Convergence of radiological quantity of
interest—41Ar activity concentration in air—evaluated
on basis of estimated parameters to that produced by
the twin model can be then assessed.

The topology of measuring sites is similar to that of
the Early Warning Network of the Czech Republic [5].
The time step of assimilation algorithm is 10 minutes
and the time horizon tMAX=6 (60min). Measuring de-
vices are assumed to integrate the γ-dose in 10 minute
intervals.

A group of the most significant variables affecting the
dispersion process (including meteorological inputs) was
selected using available sensitivity and uncertainty stud-
ies performed on Gaussian dispersion models [4]. Vari-
ables of the dispersion model CADM treated in this nu-
merical example as uncertain are: magnitude of release
Q, horizontal dispersion coefficients σsi|i=1, 2 and also
two meteorological inputs: wind speed u and wind di-
rection φ. Their parametrization via vector of random
parameters θt = (ωt, ξt, ψt, ζt) and location parame-
ters (Q0, u0, φ0, σsi0|i=1,2) is listed in Table 1.

variable parametrization
Q – released activity Q = ωtQ0
u – wind speed u = (1 + 0.1 ξt)u0 + 0.5 ξt
φ – wind direction φ = φ0 + ψt (2π/80) rad
σsi|i=1, 2 – dispersion σsi = ζt σsi0|i=1, 2

Table 1. Parametrization of selected variables and in-
puts to the ADM.

The comparison of initial CADM inputs with the initial
setting of the twin model is in Table 2. The “real” re-
lease is smaller in magnitude, with the lower wind speed,
directed by approximately 37deg anticlockwise and the
puff disperses more than we apriori assumed.

variable prior value par. value true value
Q 1.0E+10Bq ωt = 0.72 7.2E+09Bq
u 3.10m/s ξt = −0.17 2.96m/s
φ 310.0deg ψt = −8.3 272.7deg
σsi σsi = σsi(dist) ζt = 1.3 σsi = 1.3σsi

Table 2. Values of variables of the initial model setting
and the twin model.

Numerical experiment

The results are visualized in terms of the time integral
of ground level concentration of activity in air (TIC):

TIC(s) =

tMAX∫
0

C(s, τ ) dτ. (10)

Computational grid is a rectangular grid of dimension
41× 41 grid points with the grid step 1km. The source
of pollution is placed in the center of the grid.

In Figure 1 left we can see the TIC evaluated by the
atmospheric dispersion model without the data assim-
ilation and with initial setting of variables Q = Q0,
u = u0, φ = φ0 and σsi|i=1, 2 = σsi0|i=1, 2. This is
done by choosing θ = (1.0, 0.0, 0.0, 1.0, ), see Table 1.
In Figure 1 right is the TIC evaluated by the twin model
used for simulation of measurements. In Figure 2 are
visualized assimilation results.

Figure 1. Predicted TIC based on initial values without
the data assimilation (left) and the twin model (right).

Assimilation results are presented in the form of ex-
pected value of TIC with respect to the predictive den-
sities at different time steps. Expected value of pre-
diction of TIC displayed in Figure 2 top left are based

only on the measurements y1. Even at this stage, the
wind direction was correctly recognized, however other
parameters, such as parametrization of Q, are still too
uncertain and the prediction differs from the twin model.
With increasing time the measurements provide enough
information and the expected values of TIC converge to
the twin model.

Figure 2. Predicted TIC based on assimilation at
t = 1, 2, 3, 4, 5, 6, respectively.

Conclusion and future work

The presented scenario clearly illustrates the power of the method. Introduced Bayesian methodology has very
interesting properties suitable for this scenario:

• It allows joint estimation of spatio-temporal distribution of activity and parameters of the dispersion model

•We obtain assimilated estimates of the radiation situation on the terrain

•Method provides a way how to easily extend this estimates to predictions on an arbitrary horizon

However, a lot of work is required to incorporate the method to the existing decision support systems:

•Development of more realistic models of the state evolution and the measurements

•More realistic scenarios should consider a mixture of radionuclides

• Extended set of uncertain variables should be considered
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