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I. Introduction

In the current state of development is software system HARP capable to model atmospheric dis-
persion of radioactive pollutants and subsequent dose distributions and health effects in the exposed
population. Main objective is to improve reliability of the model predictions via advanced statistical
techniques of assimilation of model results with observations from terrain. The aim is to develop mod-
eling, simulation and educational tool with unified user-friendly graphical interface for utilization in
radiation protection.

II. HARP system

The HARP system consists of three main parts: Atmospheric dispersion model (ADM), Dose model
(DOS) and Food-chain model (FCM), more in [1]. In recent development of HARP were numerical
algorithms modified from deterministic to their probabilistic versions, see [2]. Probabilistic version
enables for sensitivity analysis, uncertainty analysis and also for statistical estimate of error covariance
structure of generated data. The block diagram of system architecture is in the Fig. (1).

1. Assimilation submodule

Assimilation submodule offers comfortable graphical user interface for interactive insertion of data
and its maintenance and evaluation. Numerical and assimilation subsystem have direct binding to
visualization submodule (see Fig. (1)), so both modeled data and measurements can be easily visual-
ized on relevant scalable map background. Evaluation of results is also supported by data tables and
comparative graphs. Also access to ORACLE database of meteorological forecasts and measurement
stations included in Radiation Monitoring Network of the Czech Republic is established there. In the
current state of the art are implemented following assimilation algorithms: Interpolation procedures,
successive corrections method, optimal interpolation and Kalman filter.

2. Atmospheric dispersion model

ADM in HARP is based on segmented Gaussian plume model (SGPM). The segmentation allows us
to use different set of input parameters for each of the segments. In the current state of development
the model has more than hundred input parameters and the most significant of them P1−P12 (resulting
from sensitivity analysis) are listed in Table (2.). In the table are distributions of random parameters
multiplicatively applied to nominal values of input parameters in order to obtain probability distri-
butions of those. Parameter distributions are expert-based estimates supplemented by measurements.
The influence of the rest of model input parameters on variation of model output is assumed to be
unimportant and these parameters are on input set to their best estimate values.

We divide the parameters into to groups: Local and global. The global parameters don’t vary through
the segments and remains same for all of them. Values of local parameters vary in time and/or with
spatial location. SGPM enables to take into account realistic weather forecasts hourly provided by
the Czech Hydro-Meteorological Institute. ADM also accounts for many factors affecting the plume



Figure 1: The architecture of the HARP system. Deterministic numerical kernel is interconnected to
visualization and assimilation submodule via graphical user interface.



Table 1: The most significant parameter of ADM and distribution of multiplicative factors used for
their generating from nominal values.

Variable G/L Min Mean Max Distribution σ

P1 - intensity of release G 1.0 normal 0.20
P2 - horiz. dispersion G 1.0 normal 0.13
P3 - horiz. fluct. of wind dir. L -5 0 5 disc. uniform
P4 - dry deposition of elem. G 0.41 1.0 1.6 uniform
P5 - dry deposition of aero. G 0.41 1.0 1.6 uniform
P6 - elution of elem. iodine G 0.2 1.0 5.0 log-uniform
P7 - elution of aero. G 0.2 1.0 5.0 log-uniform
P8 - advection speed of plume L -1.0 0.0 1.0 uniform
P9 - wind profile G 0.5 1.0 1.5 uniform
P10 - vertical dispersion G 1.0 normal 0.13
P11 - mixing layer height G 0.6 1.175 1.75 uniform
P12 - heat flux G 0.0 0.5 1.0 uniform

depletion (dry/wet deposition, influence of terrain type etc.).

III. Scenario for long-term deposition of 137Cs over terrain

The plume moving over the terrain leaves behind a radioactive trace due to dry and wet activity
deposition. Movement of a plume over observed area lasts usually few hours. When the plume leaves
observed area, the trace represents an initial condition for prediction of further evolution of radiological
situation on terrain. Our analyzed scenario starts just after the plume leaves the observed terrain. An
emphasis is laid on prediction of long term evolution of radiological situation in time horizon of years
up to tens of years. This knowledge is important for planning of long-term countermeasures relating
to food-chain model, which is also a part of the HARP system.

The only nuclide assumed in this scenario is 137Cs. As half-time to decay of 137Cs is approximately
30 years, it is one of most significant and dominant source of radioactivity in long term scenarios.

Initial conditions (background field) for assimilation is given by the ADM when the radioactive
plume is gone. As s model of radiation situation evolution is used the relation according to Eq. (3)
from the OSCAAR model. The crucial task is to estimate error covariance structure of the model and
the background field. As a first attempt, we are trying to estimate error covariance structure by Monte-
Carlo approach as a sample covariance of a drawn sample of size N ≈ 103. The sample was generated
according to given probability distributions, see Table (1.).

Alternative way of estimation of error covariance structure could be a spatial filter widely used in
meteorology because of high dimensionality of problems solved there. Spatial filters are based on as-
sumption: The bigger distance between two points the smaller correlation between modeled/measured
values in these points. This assumption is rather unrealistic and physically inexact and also denies one
of major advantages of assimilation methods - embodying of physical information. Spatial filters for
determination of correlation between points i and j proposed by Bergthorson and Doos are as follows:
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where rij is the distance between the points and L is a chosen constant called radius of influence.



1. OSCAAR model

Abbreviation OSCAAR stands for Off-Site Consequence Analysis code for Atmospheric Releases in
reactor accidents and it has been developed within the research activities on probabilistic safety assess-
ment at the Japan Atomic Research Institute [3]. OSCAAR consists of a series of interlinked modules
and that are used to calculate the atmospheric dispersion and deposition of selected radionuclides. In
this work are adopted formulae and principles used in OSCAAR for prediction of dose rate due to
long-term groundshine. It can be expressed by the Eq. (3).
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The interpretation of terms in Eq. (3) is in the Table (2). The following exponential functions represent

Table 2: Interpretation of term in Eq. (3)
Dg(t) dose rate on day t after deposition of a radionuclide (Sv s−1)
SDk total deposition of the radionuclide at place k (Bq m−2)
R(t) factor to account for radioactive dacay occuring between the deposition and t
E(t) factor to account for the environmental dacay of groundshine (Sv s−1 perBq m−2)
DFg dose-rate conversion factor for groundshine
L geometric factor (%)
fi fraction of i-th occupation group (%)
OF out

i outdoor occupancy factor for i-th occupation group (%)
OF in

i indoor occupancy factor for i-th occupation group (%)
SF shielding factor for wooden of brick house (%)

the two factors of R(t) and E(t) as a functions of time. The experiments had shown that the mitigation
of groundshine due to environmental decay follows relation given by superposition of two exponentials
(Eq. (5), (6)).
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where
df + ds = 1 (6)

Ground deposition model formulae are semi-empirical, it means that some of equation parameters are
determined empiricaly upon measurements and the parameter values depend on the local conditions
in the place of model application (soil type etc.). The dose conversion factor was calculated by the
method of Kocher (1980) in which the exposed individual was assumed to stand on a smooth, infinite
plane surface with uniform concentration of source of radioactivity. Data used in the groundshine
dose calculations are given in Table (1.). The parameter distributions were determined for 137Cs from
Chernobyl disaster. The appropriate data for other elements are not available but it is assumed that the
long-term influence of most of them is not significant. For elements with high half-time to decay are
assumed the same equations of groundshine mitigation as for 137Cs. As in the HARP, the approach
used in OSCAAR adopted probabilistic methodology and it allows us to determine error covariance
structure of the model. It is a necessary condition for application of advanced assimilation techniques
to the model (Kalman filter, 4DVAR).



Table 3: Parameter values used for ground exposure calculations in OSCAAR model.
Variable Mean Min Max Distribution Units

ds 0.52 0.40 0.71 Uniform -
Tsf 1.1 0.41 1.4 Uniform y
Tss 28 24.3 29.4 Uniform y
L 0.45 0.2 0.7 Uniform -

SF(wood) 0.52 0.26 0.78 Uniform -
SF(brick) 0.2 0.1 0.3 Uniform -

DFg 5.86× 10−16 - - Sv s−1/Bq m−2

IV. Data assimilation

The goal of data assimilation is to provide an analysis which relies on measurements and so called
background field from a model forecast. Other inputs to data assimilation process can be physical
constraints on the problem or any additional prior knowledge not included in the model. Merging
of these contending sources of information had shown to be very promising in many branches of
contemporary Earth sciences like meteorology and oceanography.

In data assimilation we try to adjust model according to measured values what represents research
effort to move from isolated model prediction forward reality. An automatic procedure for bringing ob-
servations into the model is called objective analysis. The major progress of the objective analysis was
achieved in the field of meteorological forecasting techniques that represents efficient tool in struggle
with tendency to chaotic destruction of physical knowledge, see [4]. Advanced assimilation methods
are capable to take into account measurements and model errors in form of error covariance matrices.

In the Fig. (2) we can see the schematic of two stage assimilation process. In the first stage called
data update step are modeled values adjusted according to all measurements available in certain time
step. This part of data assimilation process is often called intermittent assimilation. This step allows
us to get new and hopefully better initial conditions for time update step which performs the prediction
of evolution of an analyzed quantity. Advanced assimilation algorithms also enables for prediction of
evolution of model errors. Without data update step we could get a prediction substantially diverging
from the true evolution.

1. Kalman filter
The Kalman filter ([5]) has long been regarded as the optimal solution to many tracking and data

prediction tasks. The purpose of filtering is to extract the required information from a signal, ignoring
everything else. Kalman described his filter using state space technique which enables filter to be used
as either a smoother, a filter or a predictor. In this paper is presented exploitation of Kalman filtering
method in a special assimilation scenario.

As was already stated in previous paragraph, initial condition for the task of prediction of radiological
situation evolution is given as a result of ADM when the plume is gone. Reliability of this initial value
xf (often called background field) can be improved by assimilation process. If there are available some
measurements yt

o at time t which we assume to be more reliable then the model, we can adjust the
model according to their values with respect to physical information contained in the model. Error
covariance structure is expressed in form of error covariance matrices of model Pt

f and measurements
Rt. The result of this process in time t is a new better initial condition xt

a called analysis (Eq. (7),
Eq. (8)) and information on its error covariance structure Pt

a (Eq. (9)). H is a linear operator for
transformation of points from space of model into the space of measurements. This process is called
data update step of Kalman Filter.

xt
a = xt

f + Kt(yt
o −Hxt

f ) (7)



Figure 2: The schematic of data assimilation process.

Kt = Pt
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The second step is called time update and in this step is performed time evolution of an analyzed
quantity via linear model M (Eq. (10)) and also evolution of its error covariance structure (Eq. (11)).
Output of second step of Kalman filter is prediction xt+1

f and information on error of this prediction
Pt+1

f .
xt+1

f = Mxt
a (10)

Pt+1
f = MPt

aMT + Q (11)

This two steps can be iteratively repeated as long as new measurements are available.

V. Results and Conclusion

In assumed scenario no shielding was assumed, so shielding coefficients were set to 1. Because
of lack of real measurements testing of an assimilation process was performed with simulated mea-
surements sampled from the same numerical model using perturbed input parameters. Early results
presented in oral part of presentation show that this task can be successfully solved via two step data
assimilation process, but there are still some problems especially with estimation of error covariance
structure (ECS) and its propagation forward in time.



The achieved results had shown so far that the differentiation of ADM input parameters to local and
global introduced in paragraph II.2 substantially influences ECS of the model. Choice of parameters
to vary in order to estimate error covariance structure is important part of assimilation process. The
presented results can be seen in the Fig (3). We can see there a visualization of ECS for certain point of
polar network (Fig (3a)). The ECS was an input to the assimilation procedure, which was used to adjust
nominal value of numerical model (Fig (3b)) according to measurements (Fig (3c)). The assimilated
value of the model was used as a new better initial condition for further prediction of evolution of
137Cs on terrain (Fig (3d)).

The results from spatial filter (Eq. (1), (2)) could by used for weighing of statistical estimate of
error covariance structure and to mitigate the influence of global vs. local property of certain input
parameter.

Figure 3: (a) Visualization of ECS for certain point (white point). (b) Background field from ADM. (c)
BF after assimilation with the only measurement (yellow point). (d) Prediction of an evolution after 10
years.

In the next development of assimilation methodology and HARP system is intended to implement



some other advanced assimilation methods based on Bayesian approach.
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This work is part of the grant project GAČR No. 102/07/1596, which is funded by Grant Agency of
the Czech Republic. A lot of useful knowledge has been also acquired during RODOS customization
procedure for the Czech territory

References
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