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Abstract: Improvement of mathematical model predictions of environmental pollution 
based on assimilation with real observations incoming from terrain represents great 
challenge and commitment for modellers. The authors are engaged in the grant project 
dealing with development of advanced statistical assimilation techniques and their 
implementation into corresponding software tool for support of decision making during 
emergency situations. In this article we pay attention to one simple method based on least 
square approach which, according to our opinion, has its own specific role among wide 
palette of assimilation techniques. Output background fields of resulting potentially 
dangerous endpoints are modified by measurements in such a way, that resulting respond 
surface is fitting towards measurements through the iterative adjustment of a certain set of 
model input parameters. Thus, in all iterations the physical knowledge expressed by model 
algorithm is preserved. The method provides reasonable results for smaller set of 
aforementioned selected input “manipulation” parameters provided that the measurements 
are well positioned and sufficiently dense. In spite of this limitation this approach is 
assumed to be applicable for the first preprocessing of model predictions and available 
measurement providing for example better initial conditions for application of further 
advanced statistical techniques. At the same time it can support robustness of decision 
making and can contribute to early detection of possible fatal decision maker errors due to 
misinterpretation of input parameters for an accidental release scenario.                     
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1 ASSESSMENT OF ACCIDENT CONSEQUENCES  
 
Potential failures occurred in man-made processes can lead to dangerous phenomena 
resulted in accidental releases of harmful substances into the living environment. Hazard 
evaluation and decision-making focused on early warning and protection of population is in 
charge of emergency management teams. Reliable and up to date information represents 
basic inevitable conditions for effective management of intervention operations targeted on 
consequence mitigation during such emergency situations. This appeared to be a basic 
lesson for further progress of emergency preparedness procedures, which has arisen from 
Chernobyl accident where lack of reliable information has shown to be the main reason of 
poor effectiveness of countermeasures. Decision making has to be supported by proper 
user-friendly software tool complied with advanced theoretical methodology with access to 
all necessary relevant latest data. Crisis management should come out from reliable picture 
of space and time of accident evolution, which should take into account all available 
information including physical knowledge of problem, expert judgement of input data, 
online measurements from terrain and others. The subject of investigation concerns 
evaluation of consequences of radioactivity propagation after an accidental release from 
nuclear facility. Nevertheless, the presented approach can be adopted to general problems 
of harmful substances dissemination. Transport of activity is studied from initial 
atmospheric propagation, deposition of radionuclides on the ground and spreading through 



food chains towards human body. Corresponding model of atmospheric dispersion and 
advection is based on segmented Gaussian plume model (SGPM) approach that can account 
approximately for dynamics of released discharges and short-term forecast of hourly 
changes of meteorological conditions. Implemented numerical difference scheme enables to 
approximate simulations of important parent-daughter pair formation. Subsequent 
deposition processes of admixtures and food chain activity transport are modelled. Hazard 
estimation based on radiation doses resulting from external irradiation and internal activity 
intake is integrated into the software system HARP (more detailed description was 
published on 6th EUROSIM Congress by Pecha et al. [2007a]).  
 
 

2 FROM DETERMINISTIC CALCULATIONS TO PROBABILISTIC 
APPROACH AND DATA ASSIMILATON  

 
Recent trends in risk assessment methodology insist in transition from deterministic 
procedures to probabilistic approach which enables generate more informative probabilistic 
answers on assessment questions. Corresponding analysis should involve uncertainties due 
to stochastic character of input data, insufficient description of real physical processes by 
parametrisation, incomplete knowledge of submodel parameters, uncertain release scenario, 
simplifications in computational procedure etc. Simulation of uncertainty propagation 
through the model brings data not only for the probabilistic assessment mentioned above 
but also for another main task of analysis called assimilation of model predictions with real 
measurements incoming from terrain. Data assimilation represents the way from model to 
reality and can substantially improve the reliability of model predictions. As advanced 
statistical assimilation techniques are capable account for model and measurement errors, 
inevitable prerequisite for their application is probabilistic modelling which provides data 
for construction of covariance structure of model errors for a given release scenario. The 
main problem such analysis inheres in necessary compromise between computer code 
speed and attained precision of the results.  

There are several important sources of information that can enter the assimilation 
procedures. Basic physical knowledge is included in prior fields (resulted vectors) predicted 
by the model. Assumptions related to the random characteristics of model inputs can be 
supported by some kind of expert judgements. Substantial benefit can result from 
accessibility of data incoming from terrain. Merging of all these contending resources is a 
principle of assimilation and had shown to be very promising in many branches of 
contemporary Earth sciences.  Each such resource can be known on a certain degree of 
details (e.g. dense or rare measurements in space and time, complete or only partial 
knowledge of model error covariance structure, cases with indirect observations). Thus, 
available information determines the option of suitable assimilation technique. At a present 
time we are constructing user-friendly assimilation subsystem, which is incorporated within 
the HARP system. For a certain accidental scenario the user can select from a palette of 
particular assimilation techniques starting from simple interpolation (no model prediction, 
dense and precise observed data) up to advanced statistical methods (full description of 
resources including the error structure have to be available). Principles of integration of 
assimilation subsystem were published on conference HARMO11 by Pecha at al. [2007b]. 
  
 

3 DATA ASSIMILATION USING MINIMISATION TECHNIQUE 
 
This article deals with one particular method based on nonlinear optimisation technique. 
The objective multi-dimensional function F of N variables (subjected to bounds) is 
minimised starting at initial estimate. Simple Nelder-Mead direct search or Powell 
minimisation methods based on the concept of a simplex, that are tested here for elementary 
scenarios of accidental pollution releases, gave satisfactory results at acceptable time of 
computation.  
 

3.1 Principles of application within atmospheric dispersion and deposition 
modelling. 

 



Even for the simplest formulation of atmospheric dispersion and deposition in terms of 
Gaussian straight-line admixtures propagation the model M is nonlinear. In the following 
paragraphs we shall concentrate on accidental radioactivity release into atmosphere and its 
further deposition on terrain. Approximation in terms of source depletion scheme accounts 
for removal mechanisms of admixtures from the plume due to radioactive decay and dry 
and wet deposition on terrain. Let us proceed directly to the examination of the resulting 
fields of radioactivity deposition of a certain nuclide on terrain. The output is assumed to be 
represented by vector Z  having dimension equal to the number N of total calculating points 
in the polar grid (in our case N= 2800, what means 80 radial sections and 35 concentric 
radial zones up to 100 km from the source of pollution). General expression for dependency 
of  Z on model input parameters θ1 ,  θ2 ,  …. , θK can be formally written as  

                                     Z  =  M (θ1 ,  θ2 ,  …. , θK )                                                            (1) 

Let there are R receptor points on terrain where the respective values are measured. 
Generally, the number of receptors is much lower then N and we meet the problem with 
rare measurements expressed by observation vector Y ≡ (y1, y2, …., yR). Positions of 
sensors generally differ from the points of calculation grid.  We shall use terminology from 
data assimilation for introduction of observation operator H, specially for its linear 
observation matrix H. Construction of observation operator is done according to Kalnay 
[2003]. H is R × N matrix and transforms vectors Z from model space (having length N) 
into corresponding vector Ż in observation space (having length R) according to matrix 
notation Ż = H ⋅ Z.  Components żr of vector Ż represent model predictions interpolated at 
the positions of observations r =1, … , R. We shall define innovation vector D that 
describes observation increase according to D = Y - H ⋅ Z.   

Number K of input parameters is rather 
high (several tenth) and then for 
practical purposes only S of them are 
treated as random. Let rest of them are 
assumed to be less important from 
viewpoint of uncertainty propagation 
through the model and we assign them 
their best estimate values. Equation (1) 
is then simplified to the form Z  =  M 
(θ1 ,  θ2 ,  …. , θS, θb

S+1, … , θb
K ). In 

other words a certain number S of 
selected problem-dependent 
optimisation parameters θ1, θ2, , …, θS 
are considered to be uncertain and 
subjected to fluctuations within some 
range. The function F is constructed as a 
sum of squares in the measurement 
point positions between values of model 
predictions and values observed in 
terrain expressed as: 

(
2Rr

1r
S1rrS1 ),....,(zy),....,(F ∑

=

=

θθ−=θθ &

Figure 1. Gaussian surface shape fitting 

)                           (2)  

Minimisation algorithm finds a minimum of scalar function F on S parameters starting at an 
initial “best estimate”. In brief glance, the test points [θ1 ,  θ2 ,  …. , θS] of the objective 
function F are arranged as a S-dimensional simplex and the algorithm tries to replace 
iteratively individual points with aim to shrink the simplex towards the best points. Further 
specific analysis concerns the resulting spatial fields of radioactivity deposition of a certain 
nuclide on the terrain. Model predictions of the deposition are done with the assistance of 
Gaussian solution and then the resulting deposition fields can be interpreted as Gaussian 
surface (or mixture of partial Gaussian extents) over the terrain. Our objective is to take 
into account both model predictions and available measurements incoming from the terrain 
and to improve spatial description of deposited radioactivity. We can imagine the iterative 
process of minimisation of function F such consecutive adjustment of the resulting respond 

n surface modifications 



surface, always according to the new evaluation of the parameters [θ1 ,  θ2 ,  …. , θS]. Thus, 
the predicted respond surface of results is gradually “deformed by permissible 
manipulations” directly driven by changes of problem-dependent optimisation parameters 
θs  as long as the best fit of modified surface with observation values is reached. Important 
feature of the method consists in preservation of physical knowledge, because the new set 
of parameters [θ1 ,  θ2 ,  …. , θS] evaluated by minimisation algorithm always enters the 
entire nonlinear environmental model M according to equation (1).  
 
 

3.2 Practical implementation and results 
 
Investigation of applicability of minimisation assimilation technique was tested on “twin 
experiment”, when lack of real observations is substituted by simulation of measurements 
artificially. Moreover, if for this purposes we use the same environmental model (e.g. for a 
fix one set of parameters) we can examine the problem convergence issues. In application 
part of the paper the results of two simulation experiments TWIN1 and TWIN2 are 
illustrated. TWIN1 relates to release of nuclide 131I and its further straight-line propagation 
and deposition on terrain is described according to simple straight-line Gaussian plume 
model scheme. TWIN2 experiment deals with the problem of long-term evolution of 137Cs 
deposition on terrain. Direct search complex algorithm represented by subroutine BCPOL 
was taken from IMSL Math/Library, Vol. 1. At the same time the procedure fminsearch 
from Optimization Toolbox of MATLAB was tested with similar results.  
 

3.2.1 TWIN 1 experiment for simple release scenario described by Gaussian straight-
line propagation   

Accidental one-hour release of radionuclide 131I with total radioactivity 1.28 E+11 Bq 
discharged into atmosphere from nuclear facility is analysed. Release height is 100 m, 
propagation continues under constant meteorological conditions (straight-line propagation 
in direction North-East, mean plume velocity 1.6 m.s-1, Pasquill category D of atmospheric 
stability, no rain). Atmospheric dispersion coefficients are calculated according to KFK-
Jülich semi-empirical formulas. 

In the first step all input parameters are assumed to be represented by their best estimate 
values denoted by θi

b and then the corresponding output vector Zb presents deterministic 
solution of deposited activity of selected nuclide on terrain. At the same time Zb represents 
initial estimate for starting of minimization iterative search (input array GUESS(1:N) of 
subroutine BCPOL).  In the second step we shall further reduce the number of parameters S 
from equation (2) to four parameters. Corresponding four uncertainties c1, c2, c3, c4 are 
introduced into the model according to scheme θi = ci · θi

b  or  θi = θi
b + ci · f(θi

b).  
Specifically, their meaning and real choice is done according to the Table 1.  

Table 1.  Introduction of uncertainties for four important input model parameters 

parameter  unit expression  uncertainty 
bounds  

influence on shape   

θ1: Source release rate  [Bq.s-1] Q =  c1⋅ Qb
   c1∈<0.1;2.9> increase / decrease  

θ2 : Horizontal dispersion [m] σy (x) = c2 * 
σy (x)b

   

c2∈<0.1;3.1> squeezing/ 
stretching  

θ3 : Wind direction  [rad] ϕ=ϕb + Δϕ,  
Δϕ=c3*2π/80 

c3∈<-5.0; 
            +5.0> 

rotation  

θ4 : Dry deposition velocity  [m.s-1] vg =c4 *vgb
   c4∈<0.1;4.0> longitudinal 

gradient  



The function F(θ1 ,θ2 , …. ,θS) 
from  (2) now has form F(c1 ,c2, c3 
,c4) and  minimisation algorithm 
handles with 4-dimensional 
simplex. For purposes of 
construction of function F we have 
used slight modification of 
probabilistic version of existing 
environmental model HARP 
where original random inputs c1, 
c2, c3, c4 now play more general 
role of uncertainties characterized 
only by their range of possible 
fluctuations (see column 4 in 
Table 1). Procedure BCPOL uses 
this constraints such lower and 
upper bounds for permissible 

manipulations with values of variables c1 ,c2 , c3 ,c4 (see arrows in Figure 1). During TWIN 
experiments the observation vector Y ≡ (y1, y2, …., yR) is  simulated artificially, the 
simplest way is utilization of the same environmental model M. For TWIN 1 experiment 
we follow scheme on Figure 2. Deterministic best estimate distribution Zb generated on the 
polar calculation grid in original wind direction Sorig (North-East) is drawn in green. At the 
same time it corresponds to the best estimate values { c1 ,c2 , c3 ,c4}best ≡ { 1.0 ,1.0 , 0.0 
,1.0}. Selected positions of observations are labelled by red asterisks. We select properly 
(for illustration purposes) one fixed quartet of  { c1 ,c2 , c3 ,c4}obs ≡ {1.73, 1.51, +4.00, 1.98}  
and generate vector  Zobs =  M ({ c1 ,c2 , c3 ,c4}obs) - see dotted red curve on Figure 2. Then 
the values are transformed into observation positions according to Żobs = H ⋅ Zobs. Final 
simulated observation vector is obtained by assignment  Y ≡ Żobs. 

Figure 2. Artificial simulation of observations 

Minimisation algorithm in successive iterations j brings newly generated quartets  { c1 ,c2 , 
c3 ,c4}j closer and closer to the { c1 ,c2 , c3 ,c4}obs. Fast convergence of assimilated model 
predictions towards simulated observations has been found. 220 iterations are calculated 
during about 6 minutes and the following values has been found: { c1 ,c2 , c3 ,c4}j=220

 = 
{1.731, 1.514, +4.003, 1.982}. It demonstrates very good consent with “simulated” observations 
generated by { c1 ,c2 , c3 ,c4}obs. The results are illustrated in Figure 3.  
 

 

TRACE I

TRACE II

Figure 3. TWIN I experiment using Gaussian straight-line model. TRACE I and TRACE II 
are initial best estimate and resulting assimilation with simulated measurements (at red 
circles).  Picture of 131I  deposition levels [Bq.m-2] related to the end of plume progression.   
 



Original best estimate deposition on terrain (and at the same time initial guess entering 
BCPOL) is labelled as TRACE I. Deposition after 220 iterations is calculated as Zj=220 =  M 
({ c1 ,c2 , c3 ,c4}j=220) and its isoplets illustrates TRACE II. The assimilated respond surface 
TRACE II is at the same time practically identical with Zobs generated according to M ({ c1 
,c2 , c3 ,c4}obs) originally used for artificial simulations of measurements. The shapes of 
TRACE I and TRACE II reflect imposed changes in values of c1

best to c1
obs (higher nuclide 

discharge), c2
best to c2

obs(higher peripheral dispersion), c3
best to c3

obs(twist by 18°), c4
best to 

c4
obs(more intensive dry deposition causing steeper longitudinal gradient). 

Conclusion I: Direct search algorithm connected with Gaussian straight-line propagation 
model has proved fast convergence provided that the measurements are well positioned. Its 
applicability depends on validity of model itself. Basic uncertainty propagation in plume 
dispersion models is discussed in Hanna et al.[1982]. Profound treatment and some results 
of expert studies we have found e.g. in Goossens at al. [2001] or Irwing and Hanna [2004], 
where limitations of the models are declared. However, the TWIN 1 results could be useful 
for preliminary fleeting estimation in near distances or during constant meteorological 
conditions.  
 
 

3.2.2 TWIN 2 experiment accounting for short-term meteorological forecast 
 
TWIN2 scenario complies with hourly changes of short-term weather forecast and uses 
segmented Gaussian plume scheme (model SGPM marked as MSGPM), which is much more 
complicated then straight-line spreading (more detailed on our approach of SGPM is in 
Pecha [2007a]). The first two consecutive release segments of 137Cs discharge (each with 1 
hour duration) with released amount 2.0 E+17 Bq and 1.0 E+17 Bq has dangerous power 
close to severe LOCA accident with partial fuel cladding rupture and fuel melting. Short-
term meteorological forecast for the next 48 hours is provided by the Czech meteorological 
service. Then, for each hour since the release initiation there is prediction of wind direction 
and speed, category of atmospheric stability according to Pasquill classification and rain 
precipitation. Omitting other details, we are declaring for TWIN II the following plan: 

1. Number of uncertainties is increased from four to five as c1, c2, c3, c4, c5. c5 stands 
for fluctuation of mean wind velocity. If we suppose wind direction and velocity 
fluctuations to be independent between hourly phases, then c3 and c5 split to 6 
independent uncertainties c31, c32, c33 (for wind direction predicted for hour 1, 2 ,3) 
and c51, c52, c53 (for wind velocity predicted for hour 1, 2 ,3).  

2. Each of the two hourly segments is modelled up to third hour after the release start 
taking into account short-term hourly meteorological forecast. The situation just 
after 3 hours is given by superposition of both segments in their successive 
meteorological hourly phases. Resulting best estimate fields are calculated in 
analogy with equation (1) according to scheme Zb

3hour = MSGPM ({ c1 ,c2 , c31, c32, 
c33,  ,c4, c51, c52, c53 }best) and is illustrated in Figure 4a.   

3. Let simulate artificially fictive “observation surface” according to Zobs
3hour =  

MSGPM ({ c1 ,c2 , c31, c32, c33 ,c4, c51, c52, c53}obs). Vector of simulated measurements 
at observation positions (see black filled squares in Figure 4b) are calculated by 
help of linear observation operator as Y3hour ≡ H Zobs

3hour . Let us suppose their 
incoming in one stroke just at hour 3 after the accident start. The “observation 
surface” nearly corresponds with TRACE II formation in Figure 4c. 

4. Accomplish assimilation of the model predictions Zb
3hour in compliance with 

measurements Y3hour in analogy with equation (2) using BCPOL procedure of 
minimisation.  

Deposition of 137Cs on terrain after 728 iterations is calculated as Zj=728
3hour =  MSGPM ({ c1, 

c2 , c31, c32, c33 ,c4, c51, c52, c53}j=728) and its isolines illustrates in Figure 4c a trail on terrain 
marked as TRACE II. The results represent a new prediction just at third hour after release 
start, which is corrected by observations. Minimisation algorithm is initiated by the best 
estimate solution (TRACE I ) and gradually approaches to the simulated observations. In 



short numerical summary, TWIN2 experiment required to prepare in advance sets of 
parameters { c1 ,c2 , c31, c32, c33 ,c4, c51, c52, c53} for: 

best estimate:        { ….}b   =  1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0    (*)   
“measurements”: { ….}obs =  7.0, 2.0, -4.0, -5.0, -6.0, 2.55, -0.5, -0.6, -0.7  (**) 

Here are examples of results achieved during iteration process for a particular iteration j :  

{ ….}j=728 =    7.18, 2.49, -3.94, -5,80, -6.34, 2.49, 0.21, -0.28, -0.59  (***) 
{ ….}j=1201  =  7.25, 2.03, -4.14, -5,80, -6.39, 2.59, 0.27, -0.36, -0.58 
(*)  TRACE I in Figure 4a,  (**) close to TRACE II  in Figure 4c, (***) TRACE II  in Figure 4c 
    

 

TRACE  I

 
Figure 4a.  Nominal deposition of 137Cs          Figure 4b. Positions of artificially simulated  
                 ( just 3 hours after release start)                       measurements (black squares) 

 
Meaning of the parameters c1 to c4 is 
the same as described in Table 1. c5 
stands for uncertainty of the mean 
velocity of the plume. Further spliting 
to c5i, i=1,2,3 holds true for 
independent fluctuations of the mean 
velocity ūi forecasted for hours i. 
Uncertain ūi is then expressed 
according to ūi= ūi

best (1+0.35* c5i). 
c5i bounds are <-1; +1>. More 
detailed recommendations for 
uncertainty bounds arising from 
expert judgement were found for 
example in Goossens at al. [2001]. 

Conclusion II:  TWIN II experiment 
took into consideration 9 optimisation 

parameters with constructive idea to discriminate according to their global or local effect 
(introduced into the wind vector). System HARP is connected to the ORACLE server for 
online access to meteorological forecast, but for scenario TWIN II was used a certain 
historical meteorological forecast sequence. Satisfactory convergence is illustrated, but 
more detailed analysis related to the criterion of match between model and measurements 
(e.g. Eleveld [2004]) is so far pending.  

 TRACE II 

  TRACE  I 

Figure 4c. Assimilation of 137Cs model prediction 
     and simulated measurements just after 3 hours

 
 

4 FINAL REMARKS 
 
Our latest tests have included also local effect of atmospheric precipitation and have 
confirmed its decisive role on character of picture of deposition on terrain. Our experience 
related to applicability of minimisation techniques indicates that number of selected 
optimisation parameters ci should not be too high in order to avoid the poor convergence or 
even further algorithm “wander” (more sophisticated algorithms have to be searched). At 



this stage we recommend to consider five optimisation parameters included in the TWIN II 
experiment (where wind velocity vector is global, it means no further splitting of c3 to 
further c3i and c5 to c5i ) and link the 6th parameter c6 representing uncertainty in 
precipitation intensity with local effect.  

Presented minimisation technique fits results 
on a certain specific situation described by 
incoming observations, whereas in this 
process always preserve physical 
knowledge. But in no case it cannot be 
confused with parameter calibration. Real 
signification of our effort insists in 
achieving a reasonable capability to improve 
model predictions on basis of assimilation 
with observed values. Realistic prediction of 
evolution of radiation situation during 
emergency gives decision makers necessary 
time on judgement and introduction of 
efficient countermeasures on population 
protection.  In Figure 5 is model prediction 
according to Zb

9hour=MSGPM ({…, ci ,…}best). 
It represents a simple extension of Zb

3hour = 
MSGPM ({…, ci ,…}best) illustrated in Figure 
4a or 4b as TRACE I from hour 3 to hour9 
after the release start. But we can easily 
anticipate, that if we extend propagation 

from assimilated TRACE II staying for hour 3 to hour 9 after release, we shall meet 
different but more reliable picture. Interventions introduced on the basis of earlier 
description according to Figure 5 could lead to fatal consequences on population health.  

Figure 5. Nominal deposition of 137Cs on 
terrain ( just 9 hours after release start) 
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